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When a flexible structure is to be controlled actively, optimum

performance is obtained by integrated, or simultaneous, design of the

structure and the controller, as opposed to the common practice of

designing the structure independently of control considerations and

then designing a controller for a fixed structure. The primary design

objective from the structural point of view usually is to minimize

weight, while the control design objectives depend on the application.

An important requirement for a practical control system is robustness

with respect to uncertain plant parameters. This dissertation dis-

cusses robust compensator design for fixed structures, and simultaneous

control/structure design where the overall design objective combines

the weight of the structure and the robustness of the closed-loop

control system. For numerical optimization, robustness is represented

xxiii
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by the sensitivity of the closed-loop eigenvalues with respect to un-

certain parameters. An example illustrates the closed-loop control

system with robust compensator, and two examples illustrate the optimal

designs of a flexible structure along with robust compensators. The

dissertation also compares different finite element models to determine

models most efficient for compensator design.
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Chapter I

INTRODUCTION

Recent years have seen increasing research in integrated control

and structural optimization. The primary motivation of this research

is control of large flexible space structures, which are becoming

larger and more flexible at the same time that their performance

requirements are becoming more stringent. The complexity of these

structures produces significant uncertainty in the parameters of such

structures due to changing environments and modeling inaccuracies.

Thus control/structure design methods are needed to produce high-

performance, robust controllers and light, complex structures.

Among references that address integrated control�structure design

are [BI], [Jl], [LI], [M3], [M4], [NI] and [$2]. References [BI] and

[Jl] address an eigenvalue placement/optimization approach which

seeks to impose specified constraints upon the closed-loop eigenvalues

(without estimation) which are functions of structural and control

design variables, while minimizing the control gain norm. Reference

[$2] adresses the problem of minimizing a composite objective function

as a linear combination of structural objective (structural mass) and

control objective (standard quadratic performance index) subject to

frequency constraint.
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The primary objective of this dissertation is to obtain robust

compensators by addressing the following two problems:

i,

For a fixed structure, find controller and observer gains (design

variables) that minimize the sensitivities of the closed-loop

eigenvalues with respect to plant uncertainties (natural

frequencies) subject to eigenvalue constraints.

. Find structural parameters along with controller and observer

gains that minimize an objective function which includes the

structural weight in addition to the sensitivities of the closed-

loop eigenvalues with respect to plant uncertainties, subject to

eigenvalue constraints.

In this research, robustness means insensitivity of the closed-loop

performance with respect to plant uncertainties. Although there is a

vast literature on achieving robust designs using conventional control

theory approaches, to our knowledge the proposed approach is new.

The organization of the dissertation is as follows. Chapter 2

presents a brief discussion of finite element modeling of flexible

structures and presents an example in which the flexible structure

consists of an Euler-Bernoulli beam attached (cantilevered) to a rigid

rotating hub at one end and a point mass attached to the other end of

the beam. Sections 2.2 and 2.3 discuss Hermite spline and B-Spline

approximations of the structure; then Section 2.4 follows with a brief

summary of the normal mode method.

2



I
I

I
I

I
I

I

I
I

I
I
I

I

I
I

I
I

I
I

The first three sections of chapter 3 summarize some Of the

standard results of the time-invariant linear-quadratic regulator

problem (LQR), the time-invariant optimal observer problem and the

time-invariant stochastic optimal linear-quadratic regulator problem

(LQG). Sections 3.4 and 3.5 present equations for an efficient

solution of the closed-loop eigenvalue problem, which enable one to

evaluate the left and the right eigenvectors of the closed-loop system

by doing numerical analysis in R 2n (the space of real 2n-vectors)

instead of C 4n (the space of complex &n-vectors) for 2n th order plant

and compensator. Chapter 4 presents an efficient method (Functional

Gains) of comparing approximation schemes for control of flexible

structures, and compares Hermite splines, B-splines and normal mode

approximations.

Section 5.1 of Chapter 5 derives the derivatives of closed-loop

eigenvalues in terms of controller and observer eigenvectors. Section

5.2 discusses some of the cases that cause the closed-loop designs to

be sensitive or insensitive with respect to plant uncertainties and

presents guidelines for less sensitive (i.e., more robust) control

designs, which are supported by an example in Section 5.3.

Chapter 6 addresses the problem of findin E controller and

observer gains (design variables) that minimize the sensitivities of

the closed-loop eigenvalues with respect to plant uncertainties

(natural frequencies), subject to eigenvalue constraints but no side

constraints on the design variables, and Section 6.3 follows with an
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example which demonstrates the effectivness of the first-order

sensitivity optimization of the closed-loop eigenvalues for

significantly increasing the robustness of the initial closed-loop

design (LQG).

Chapter 7 addresses the problem of finding structural parameters

in addition to controller and observer gains that minimize an

objective function which includes the structural weight in addition to

the sensitivities of the closed-loop eigenvalues with respect to plant

uncertainties, subject to eigenvalue constraints and partial side

constraints on the design variables. Sections 7.2.1 and 7.2.2 present

examples in which optimization simultaneously reduces the structural

weight and increases the robustness of the initial LQG

compensator/structure designs. Chapter 8 summarizes the main

conclusions of Chapters 5, 6 and 7. Appendix A summarizes some

standard results involving derivatives of the eigenvalues and

eigenvectors of a matrix with respect to a parameter, and appendix B

compares analytic and finite difference gradients of the initial

design of Section 6.3.

4
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Chapter II

FINITE ELEMENT MODEL

In finite element modeling of structures, the continuous

structure is separated by imaginary boundaries into a number of

"finite elements", which are assumed to be interconnected at a finite

number of nodal points located on the boundaries (nodes), then a set

of functions is selected to define the state of displacement within

each of the finite elements in terms of the nodal displacement. These

functions can be used to obtain the kinetic and strain energies of the

structure in terms of the nodal displacement. Then Lagrange's

equations of motion can be used to evaluate the generalized mass and

stiffness matrices of the structure. In addition, it should be clear

that it is necessary to begin with an admissible displacement field

(interpolation functions) for the approximation.

An admissible displacement field for an element must have the

following characteristics:

I. It must have the zero strain states or the required number of rigid

body modes.

2. It must have sufficient degrees of freedom to allow the kinematic

continuity on the boundary of two adjusent elements.

3. It must have the constant strain state.

For more details on this topic, see [Zl].

5
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To illustrate this method, we consider the structure shown in

Figure 2-1. An Euler-Bernoulli beam is cantilevered to a rigid hub at

one end and a point mass m I is attached to the other end of the beam.

The hub can rotate about its fixed center, point O.

strain energies of the structure are

£
T 62

T=½* ° +½$
0

,, ) ()2 d . ½ (£)2
p_kS V S S _ mlV ,

£

V = ½ J EI(s)w_sdS,o
0

where

The kinetic and

T = kinetic energy,

V = strain energy,

v(s) = velocity of a point on the beam,

p = density of the beam,

= length of the beam,

r = radius of the hub,

E = modulus of elasticity,

I(s) = second moment of cross sectional area,

A(s) = cross sectional area of the beam,

(2.1)

(2.2)

I
0 = hub moment of inertia about axis perpendicular to page

through point 0,

m I = point mass,

and subscript s indicates partial derivative with respect to s.

square of the velocity of a point on the elastic axis of the beam is

The
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Figure 2-1. (a) Flexible Structure. (b) Beam Cross Section.

v(s)2=[w(s)+[r+s]o]2+[Bw(s)]2

Neglecting higher order terms and substituting into (2.1) yields

T = ½Io02 + ½ml[w(_)+[r+_]8]2

+ ½ I pA(s)[w(s)+[r+s]8]2ds."

0

(2.3)

(2.4)
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Next, consider the coordinate transformation shown in Figure 2-2,

where

S = c.+ X.. (2.5)
1 1

From (2.2),(2.4) and (2.5), it follows that

T = ½Io82 + ½ml[w(£)+[r+£]8]2

n £.

+ ½i=llepb J01 hi(xi)[w(xi)+[r+ci+xi]8],dxi,

(2.6)

n £.

(xi)w2x dx.,V = ½ ze E I i Ii .x. i
i=l 0 i i

(2.7)

where n is the number of beam elements, and subscript x indicates
e i

partial derivative with respect to x.. Next, we define
1

_i = xi/£ i. (2.8)

Substituting (2.8) into (2.6) and (2.7), we obtain

T = ½Io82 + ½ml[w(£)+[r+£]8]2

n 1

+ ½ Ze pb£ i _ hi(_i)[w(_i)+[r+ci+£i_i]8]2d_i,
i=l 0

(2.9)

n 1

2V = ½ Te [E/£ ] I I. (_.)w_ ,d_.,

i=l 0 i i _i_i i

where

i 3
Ii(_ i) = l_--bhi(_i),

hi(_i) = hi(O)+[hi(1)'hi(O)]_i

hi(i) = hi+i(O)

i = i, ..., ne,

i = I, ..., n -I.
e

(2.10)

(2.ii)

(2.12)

(2.13)

8
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Figure 2'2 (a) Approximation of the Beam by Finite Elements.

(b) i-th Beam Element.
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2.1 Hermite Splines

The displacement field for the beam element shown in Figure 2-2

is approximated as

2+ 3
w(x i) = ali + a2ixi + a3ix i a4ix i, (2.14)

where the generalized coordinate all represents rigid body transverse

translation, and a2i represents rigid body rotation. T--_ere are four

generalized coordinates in this case because interelement continuity

in classical beam theory requires both transverse displacement and

slope be continuous at the boundary of two adjusent elements. The

constant strain mode in beam bending is the constant curvature change

which in embedded in a3i. Thus, the displacement field is seen to

contain all the admissibility requirements.

It is desired to represent the displacement field in terms of the

nodal displacement, so that

or

qli

q2i

q3i

• q4i •

w(xi=0)

Wx(X.=0)
. 1

1

w (xi=£ i )

w (x.=_.)
X. 1 1
1

(2.15)

qli

q2i

q3i

• q4i •

1 0 0 0

0 1 0 0

1 1 1

0 1 2£. 3g 2.
1 1

ali

a2i

a3i '

a4i

(2.16)

i0
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which implies that

I

ali Ia2i

a3i

a4i

i

:?
1

3
£i 0 0 0
1

0 £_ 0 0
1

-3_.-2_ 3_.-_
1 1 1 1

2 £. -2 £.
1 1

qli

q2i

q3i

q4i

(2.17)

In matrix form

[ai] = [B][qi ].

In view of (2.8) and (2.18), (2.14) yields

w(_i) = [ Nli(_ i) N2i(_ i) N3i(_ i)

where

3 2

Nli(_ i) = (2_i-3_i+I),

3 2
N2i(_ i) = _i(_i-2_i+_i ),

3 2
N3i(_ i) = (-2_i+3_i),

N4i(_ i) = _(_.-_2i).

N4i(_ i) ][qi ],

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Substituting (2.19) into (2.9) and (2.10), and imposing the following

constraints :

W(_l=O ) = O,

w_l=O) = O,

w(_i=l) = w(_i+l=0)

w_i(_i=l) = w_ _i+l=O)

(2.24)

(2.25)

(2.26)

(2.27)

11
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where ne is the number of beam elements, we obtain the kinetic and

strain energies of the structure in terms of the nodal displacements.

Now Lagrange's equations of motion can be used to derive the

generalized mass and stiffness matrices of the structure. Figure 2-3

shows the generalized degrees of freedom and the Hermite splines for

three beam element model. Note that the order of the generalized mass

and stiffness matrices of this structure evaluated by the Hermite

splines is [l+2n ]X[l+2n ].
e e

12
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Figure 2-3. (a) Hermite Splines for Three Beam Element Model.

(b) Generalized Degrees of Freedom.
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2.2 B-Splines

In the previous section we used Hermit splines to evaluate the

generalized mass and stiffness matrices of the structure. Note that

Hermite splines are third order polynomials which require transverse

displacement and slope to be continuous at the boundary of two

adjusent elements. On the other hand (cubic) B-splines do satisfy the

above conditions and in addition they require that the curvature

change or strain be continuous at the boundary of two adjusent

elements. To approximate the displacement of the beam element shown

in Figure 2-2 with the B-splines, consider equation (2.19) of the

previous section

w($i ) = [ Nli($ i) N2i($ i) N3i($ i) N4i($ i) ][qi ],

where

3 2
Nli(_ i) = (2_i-3_i+i),

N2i(_ i) = _i(_-2_2+_i),

3 2
N3i(_ i) = (-2_i+3_i),

3 2

N4i(_ i) = _i(_i-_i ).

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Substituting (2.28) into (2.9) and (2.10), and imposing the following

constraints

W(_l=0) = 0, (2.33)

w_l=O) = O, (2.34)

14
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w(_i=l ) = w(_i+l=O)

w (_i=l) = w (_i+l=O)

w_ ,.(_.=i) = 0
i&i m

w,._i_i,.(_i=l) = w_i_i_i+l=O )

i = i, ..., n -i, (2.35)
e

i = i, ..., n -i, (2.36)
e

i = ne, (2.37)

i = i, ..., n -i, (2.38)
e

where n is the number of beam elements we obtain the kinetic and
e

strain energies of the structure in terms of the nodal displacements.

Now Lagrange's equations of motion can be used to derive the

generalized mass and stiffness matrices of the flexible structure.

Figures 2-4 and 2-5 show the generalized degrees of freedom and the B-

splines for three and four beam element model. Note that the order of

the generalized mass and stiffness matrices of this structure

evaluated by the B-splines is [l+ne]X[l+ne].

These matrices can also be obtained by performing a similarity

transformation on the generalized mass and stiffness matrices

evaluated by the Hermite splines. Consider the linear transformation

qHS = UqBs' (2.39)

where qHS is the [2ne+l ] generalized coordinate vector corresponding

to the Hermite splines, qBS is the [ne+l ] generalized coordinate

vector corresponding to the B-splines, and U is the [2ne+l]X[ne+l ]

linear transformation matrix evaluated by using the n constraint
e

equations of (2.37) and (2.38). Then

15
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MBS = UTMHs u

KBS = UT_sU

(2.40)

(2.41)

where the subscript HS refers to the Hermite spline approximation

scheme, and the subscript BS refers to the B-spline approximation

scheme.

If one selects the transverse displacement of the nodes as the

generalized coordinates then each of the B-splines will span the

length of the beam (maximum support), but if one selects the linear

combination of the transverse nodal displacements as the generalized

coordinates then each of the B-splines will span four elements

(minimum support). Figure 2-6a shows the B-spline corresponding to

the generalized coordinate q44 which is the transverse displacement of

the fourth node of an eight element beam model. Figure 2-6b shows the

B-spline corresponding to the generalized coordinate

[_q43 + q44 + ¼q45 ]' which is the linear combination of the transverse

displacements of the third, the fourth and the fifth nodes of an eight

element beam model. For more details on this topic, see [RI] and

IS1].

16
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Figure 2-4. (a) B-Splines for Three Beam Element Hodel.

(b) Generalized Degrees of Freedom.
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Figure 2-5. (a) B-Splines for Four Beam Element Model.

(b) Generalized Degrees of Freedom.
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2.3 Normal Modes

Consider the structural dynamic problem

Mq +Kq = O, (2.42)

where M is a nXn mass matrix, K is a nXn stiffness matrix, and q is a

generalized coordinate n-vector. Solution of (2.42) yields

wi i = I, ..., n,

_i i = I, ..., n,

•th .th
where wi is the m natural frquency, and #i is the i natural mode.

We normalize #i so that

#TiM_i= 1 i = i, ..., n,

and impose the coordinate transformation

q= _n

on (2.42), where

'- ['l_2 _n]'

and _ is the normal coordinate n-vector.

M_n + K_, = O.

Premultiplying . (2.46) by _T yields

equat ions

• . 2

0 i= i, n.i+ Wi_i = •.. ,

Then we obtain

the decoupled

(2.43)

(2.44)

(2.45)

(2.46)

differential

(2.47)

2O
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P_"U_'I'ER

hub radius r

hub moment of inertia I
0

beam length i

beam mass per unit length mb

_,,_ moment of cross ==ut_ux_l =z_a I

modulus of elasticity E

damping coefficient c
0

point mass m I

VALUE

I0

102

102

10 -2

_,I,3

iO 4

10 -3

UNIT

in

slug. in 2

in

slug/in

4
in

s lug/in, sec 2

slug

Table 2-I Structural Data.

This coordinate transformation (normal coordinates) will be seen

to be very helpful in evaluating equations for sensitivity

optimization. Figure 2-7 shows the first three flexible natural mode

shapes (excluding the rigid-body mode) of a ten beam element model of

the structure shown in Figure 2-1.
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Figure 2-7. First Three Natural Modes of the Ten Beam Element Model.

(_) 2nd mode, (o) 3rd mode, (<>) 4th mode.
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Ch.apter I II

CONTROL DESIGN

3.1 Time-lnvariant Optimal Linear-Quadratic Regulator Problem

In this section we summarize some of the results of the time-

invariant optimal linear-quadratic regulator problem. We assume that

the complete state x(t) of the plant can be accurately measured at all

times and it is available for feedback. For more details on this

topic, see [KI].

Consider the linear time-invariant state equation

where

x(t) = Ax(t)+Bu(t), (3.1)

x(t) = 2nxl state vector,

A = 2nX2n system matrix,

B = 2nXr actuator influence matrix,

u(t) = rxl control vector.

The quadratic performance measure is

J = I [xT(t)QcX(t ) + uT(t)RcU(t)]dt, (3.2)
0

where Qc is a 2nx2n nonnegative definite real symmetric state

weighting matrix, and R is an rxr positive definite real symmetricc

input weighting matrix. The problem of determining an input u(t) for

23
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(3.1) such that the quadratic performance measure (3.2) is minimal is

referred to as the time-invariant deterministic linear-quadratic

optimal regulator problem, LQR. Note that the quantity xTQcx in

(3.2) is a measure of how fast one desires to bring the initial state

to the origin (zero state), and the quantity uTR u is a measure of the
c

control effort. Therefore, the relative importance of the error in

state and the control effort is determined by the matrices Qc and Rc

The steady-state optimal control vector u(t) for the time-

£nvariant deterministic optimal linear-quadratic regulator problem is

generated by the linear control law

u(t) = -Fx(t), (3.3)

where

F = R'IBTp
(3.4)C

is the optimal control gain matrix, and the constant nonnegative

definite real symmetric matrix P satisfies the algebraic matrix

Riccati equation

PA + ATp - PBR'IBTPc + Qc = O. (3.5)

The solution of (3.5) can be obtained by defining the 4nX4n

matrix

A -BR'IB T
c

"Qc
.AT

(3.6)

When H has no eigenvalues with zero real part, then

24
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+ u(t) PLANT

x=Ax+Bu

OPTIMAL

CONTROL

GAIN

MATRIX

F

x(t)

r

Figuro 3-I. Block Diagram of the Optimal Linear-Quadratic Regulator

System.

p -1
= W22WI2,

[A'BF]W12 = -W12A,

where

(3.7)

(3.8)

[A o]HW=W 0 -k ' (3.9)

w=[ wll w12 ].
W21 W22

In (3.8)-(3.9), A

(3.10)

is a 2nX2n matrix whose eigenvalues are the

eigenvalues of n with positive real part, and A-BF is the 2nx2n

closed-loop optimal linear-quadratic regulator system matrix. Figure

3-1 shows the block diagram of the optimal linear-quadratic regulator

system.
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3.2 Time-lnvariant Optimal Observer Problem

In this section we summarize some of the results of the time

-invariant optimal observer problem. For more details on this topic,

see [KI] and [M2].

Consider the linear time-invariant system equations

x(t) = Ax(t)+w(t),

y(t) = Cx(t)+v(t),

where

x(t) = 2nXl state vector,

(3.11)

(3.12)

W(t) = 2nxl state excitation noise vector,

y(t) = mXl observation or measurement vector,

v(t) = mxl observation or measurement noise vector,

A = 2nX2n system matrix,

C = mX2n measurement matrix.

The stochastic processes {w(t), t _ t o } and {v(t), t Z to} are

uncorrelated zero-mean gaussian white noises with covariance matrices

E[w(t)wT(_)] = Qe6(t-_) _ _ to, (3.13)

E[v(t)vT(_)] = Re6(t-_) _ Z to, (3.14)

where E denotes the expected value, and 6 denotes the Dirac delta

function. In addition, we assume that Qe is a 2nx2n positive

semidefinite real symmetric matrix, R is an mXm positive definite
e

real symmetric matrix, and the initial state is a zero mean gaussian

random 2n vector independent of the state excitation noise and
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observation noise.

The mean square filtering error is

~ x ~a[x(tlt)l - E[ T(tlt)x(tlt)l, (3.15)

where

~

xCtlt) = x(t)-_Ctlt) (3.16)

is the error in the filtered estimate of the state, and _(tlt ) is the

filtered estimate of the state x(t)

based on measurement over the

at time t _ to

interval [t0,t]

(initial time)

(conditional

expectation). The problem of determining the filtered estimate of the

state at some time t _ t. (initial time) based on measurments over the

interval [t.,t] such that the mean square error is minimized is

referred to as the optimal observer problem or Kalman-Bucy filtering

problem, KBF.

The steady-state optimal linear filtered estimate for the system

of equations (3.11) and (3.12) is generated by the relation

= _+G[y(t)-CR], (3.17)

where x=x(tlt), x(tolt.)=O and

G = pcTR "I
(3.18)e

is the optimal observer gain matrix. The constant nonnegative

definite real symmetric matrix P, covariance matrix of the filtering

error, satisfies the algeblaic matrix Riccati equation

AP + PAT- pcTR'ICPe + Qe = 0. (3.19)
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3.3 Time-lnvariant Stochastic Optimal Linear-Quadratic Regulator

Problem

In this section we summarize some of the results of the time-

invariant stochastic optimal linear-quadratic regulator problem. For

more details on this topic, see [KI] and [M2].

Consider the linear time-invariant system equations

where

x(t) = Ax(t)+Bu(t)+w(t),

y(t) = CxCt)+v(t),

(3.20)

(3.21)

x(t) = 2nXl state vector,

w(t) = 2nXl state excitation noise vector,

y(t) = mxl observation or measurement vector,

v(t) = mxl observation or measurement noise vector,

u(t) = rX1 control vector,

A = 2nX2n system matrix,

B = 2nXr actuator influence matrix,

C = mX2n measurement matrix.

The stochastic processes {w(t), t _ 0 } and {v(t), t a 0 } are

uncorrelated zero-mean gaussian white noises with covariance matrices

E[w(t)wT(z)] = QeS(t-z) _ _ 0, (3.22)

E[v(t)vT(z)] = R 8(t-z) _ _ 0, (3.23)
e

where E denotes the expected value, and 6 denotes the Dirac delta

function. In addition, we assume that Qe is a 2nx2n positive
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semidefinite real symmetric matrix, R is an mXm positive definite
e

real symmetric matrix, and the initial state is a zero mean gaussian

random 2n vector independent of the state excitation noise and

observation noise.

The quadratic performance measure is

T

J = E{£im 1 I [x_(t)QcX(t) + u_(t)R u(t)]dt} (3.24)-- C
T_ _ 0

where Qc is a 2nx2n nonnegative definite real symmetric state

weighting matrix, and R is an rXr positive definite real symmetric
C

input weighting matrix. The problem of determining an input u(t) for

(3.20) and (3.21) such that the quadratic performance measure (3.2&)

is minimal is referred to as the time-invariant stochastic optimal

linear-quadratic regulator problem, LQG.

The steady-state optimal control vector u(t) for the time-

invariant stochastic optimal linear-quadratic regulator problem is

generated by the linear control law

uCt) = -F_Ct), (3.25)

where

F = R'IBTp
(3.26)

C

is the optimal control gain matrix, and the constant nonnegative

definite real symmetric matrix P satisfies the algebraic matrix

Riccati equation

PA + ATp - PBR'IBTPc + Qc = 0. (3.27)

29



I

i

I

I

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

The steady-state optimal linear filtered estimate for the system

of equations (3.20) and (3.21) is generated by the relation

= A_+G[y(t)-C_]+Bu(t),

A A

where x=x(tlt), _(0]0)=0, and

G = pcTR "I
e

is the optimal observer gain

(3.28)

(3.29)

matrix. The constant nonnegative

definite real symmetric matrix P, covariance matrix of the filtering

error, satisfies the algeblaic matrix Riccati equation

AP + PA T- pcTR'ICPe + Qe = 0. (3.30)

In view of (3.26) and (3.29), the optimal control gain matrix is

independent of all the statistical parameters in the problem, and the

optimal observer is independent of the matrices in the performance

measure, (separation principle). Figure 3-2 shows the block diagram

of the stochastic optimal linear-quadratic regulator system.
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3.4 Eigenvalues and Eigenvectors of the Closed-Loop System

In this section we derive equations for an efficient solution of

the closed-loop eigenvalue problem for any gains. We want to evaluate

the eigenvalues and the right and the left eigenvectors of the closed-

loop system by doing the numerical analysis in C 2n (the space of

complex 2n-vectors) instead of C 4n, where 4n is the dimension of the

closed-loop eigenvalue problem.

Consider the closed-loop system equations

where

x = Ax+Bu, (3.31)

y = Cx, (3.32)

= A_+G(y-C_)+Bu, (3.33)

u = -F_, (3.34)

x = 2nXl state vector,

A

x = 2nxl filtered estimate of the state vector,

y = mXl observation or measurement vector,

A = 2nX2n system matrix,

B = 2nXr actuator influence matrix,

C = mX2n measurement matrix,

F = rx2n control gain matrix,

G = 2nXm observer gain matrix,

u = rXl control vector.

Combining (3.31)-(3.3&), we obtain the closed-loop state equation

32



Z = Ac£Z,

where

(3.35)

i ix]Z i. A '

x

I A -BF

Ac_ = [ GC A-BF-GC ]"

I Next, consider the coordinate transformation

i z = Tz,

(3.36)

(3.37)

(3.38)

I

I
I
I

i
I
I

where

ix]Z "

c

A

E ---- X'X,

T:TI_[I 0]
I -I

In view of (3.38), (3.35) yields

z = Ac{z,

where

_ [A-BF BF ]=
Ac£ 0 A-GC

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

I This transformation shows that, as is well known, the spectrum of Ac£

I

I

is the union of the spectrum of [A-BF] and the spectrum of [A-GC]. We

refer to the eigenvalues of [A-BF] as the controller eigenvalues and

I
33

I



to the eigenvalues of [A-GC] as the estimator eigenvalues. Also, from

here on, we assume that the eigenvalues of Ac£ are distinct.

Here, we denote by X the 2nX2n matrix whose columns are the
e

, the 2nX2n matrix whose columns are theeigenvectors of [A-GC] by Xc

eigenvectors of [A-BF], and by Z the 4nX4n matrix whose columns are

containing the eigenvalues of [A-GC], h c is the 2nx2n diagonal matrix

containing the eigenvalues of [A-BF], and hc£ is the 4nX4n matrix

Ac 0 ]Ac£= 0 h "
e

(3.44)

Hence,

[A-BF]Xc= XcA c,
(3.45)

[A-GC]Xe= XeA e ,
(3.46)

Ac_Z = ZAc_,

AcEZ = ZAcE.

From (3.43)-(3.47), we see that

X XX
c c

0 x
e

where the 2nX2n matrix X satisfies

A X - XA = -X'IBFx
c e c e

(3.47)

(3.48)

(3.49)

(3.50)
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Note that there exists a unique solution to (3.50) because, by

hypothesis, Ae and A c have no eigenvalues in common. From (3.38) and

(3.49), it follows that

Z=TZ=

X XX
c c

x [xx - x l
c c e- j

(3.51)

-I

Z

IX"I- xx"I] x x"I
c e e

x'l .X-I
e e (3.52)
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3.5 Determining Right and Left Eigenvectors

System with Real Arithmetic

Consider the closed-loop state equation

Ac&Z = Xc£Z.

of the Closed-Loop

(3.53)

Note that if _c& is a complex eigenvalue of the closed-loop system

matrix, then _ , is also an eigenvalue. Which implies

Ac£Z = Ic£Z. (3.54)

From (3.53) and (3.54), we see that

Ac£_ = o_ - w_,

Ac&_ = o6 + w_,

where

Xc£= o + jw,

z =_+j_.

In matrix form

Ac£[ _ _ ] = [ _ _ ][ O_w oW ]

In view of (3.53) and (3.59), (3.48) yields

Ac£Zr = ZrAc£,
r

where

Zr= ZT r,

Ac£= T;IAc£T r,
r

(3.55)

(3.56)

(3.57)

<3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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and T r is a block diagonal transformation matrix that stacks the real

and the imaginary parts of the right eigenvectors in columns of the

real matrix Zr. The diagonal elements of T r corresponding to the real

closed-loop eigenvalues are identity (scalar), and the 2X2 diagonal

blocks of T correspondinr to the complex pairs are
r

i -j ]½ I j (3.63)

if the eigenvectors corresponding to the complex pairs are in adjusent

columns of matrix Z. Similar transformations can be applied to X and
C

X matrices so that
e

Xcr= XcTcr, (3.64)

= X T . (3.65)Xer e er

From (3.44), (3.60)-(3.62), (3.64) and (3.65), we see that

Tcr 0 ]= • (3.66)
Tr 0 Ter

In view of (3.51), (3.52), (3.64) and (3.65), (3.61) yields

Z ..

r

X X X
cr crr

Xcr [XcrX r" Xer] (3.67)

-I

Z =
r

where

x _ "-I - X-i
[Xcr" rXe ] Xr er

X'I .X-I
er er (3.68)
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A X - X A = "X'IBFx (3.69)
cr r r er cr er'

A = T-IA T , (3.70)
cr cr c cr

A = T'IA T . (3.71)
er er e er

Then the right and the left eigenvectors of the closed-loop system are

-I
Z = ZrTr ' (3.72)

Z-IZ'I= Tr r " (3.73)
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Chapter IV

FUNCTIONAL GAINS

4.1 Functional Control Gains

In this chapter we compare convergence of three approximation

schemes using functional gains (Refs. G3 and G4). Consider the

structure shown in Figure 2-1. A uniform Euler-Bernoulli beam is

cantilevered to a rigid hub at one end and a point mass m I is attached

to the other end of the beam. The hub can rotate about its fixed

center, point O, and the control is a torque u(t) applied to the hub.

Here, we assume that the entire state vector is measured, so that no

estimation is required in the closed-loop system (full-state

feedback). The generalized displacement vector is

x(t) = [e, w(t,s), wCt,_)]. (4.1)

[G3] and [G4] we worked an optimal LQR problem for theIn

distributed model of this structure. The performance index is

J = I [82 + (Total Energy) + Ru2]dt, (4.2)

0

where total energy means kinetic energy plus elastic strain energy in

the structure, and R is the control weight. The optimal control has

the form

u(t) = -<f,x(t)>v-<g,x(t)> H, (4.3)
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where

< ' >V = strain-energy inner product,

< ' >H = kinetic-energy inner product.

In (4.3) f and g are functional control gains, which have the form

f = (af,_f,Bf), (4.4)

g = (ag,_g,Bg), (4.5)

where af, _f,ag, _g are scalars and #f, _g are functions.

The functional control gains are obtained from the solution to an

infinite dimensional Riccati operator equation. Since such an

equation can not be solved in closed form, we approximate it with a

sequence of finite dimensional Riccati matrix equations. From the

th
solution to the n Riccati matrix equations, we obtain the

approximate functional gains

fn = (af ,¢f ,Bf), (4.6)
n n n

- ,__),
gn (agn' Cgn gn

(4.7)

where n is the order of approximation.

linear combinations of the basis vectors in the approximation scheme.

These functional gains are
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4.2 Numerical Results

The above example was modeled using three approximation schemes

discussed in Chapte 2. Namely, the Hermite spline, the B-spline and

the normal mode approximations, here the normal modes were obtained by

using 24 beam elements and Hermite spline approximation. Table 4-1

shows the structural data and the control weight R=O.05 in (4.2). The

order of approximation for these schemes are

Hermite splines

B-splines

normal modes

n = 2n +I,
e

n=n+l,
e

n = number of modes,

where n is the number of beam elements.
e

Here, we compare the convergence of the functional control gain

It

components _fn and _gn since the scalars =f and = converge at a
n gn

faster rate, and the scalars

_f= _f(_), (4.8)
n n

_g_ __(_). (4.9)Mn

Figures 4-1 through 4-3 show the functional control gains based on the

three approximation schemes. In each figure, the solid line

represents the converged functional gain component _fn or #gn' and a

dashed line represents a functional control gain component

corresponding to a lower order of approximation. Note that s is the
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P__ETER

hub radius

hub moment of inertia

r

I
o

beam length i

beam mass per unit length mb

2nd moment of cross sectional area I

modulus of elasticity E

damping coefficient c
o

point mass m 1

fundamental frequency of undamped structure

VALUE

i0

102

102

10 -2

4/3

10 4

i0"4

1

0.967

UNIT

in

slug. in 2

in

slug/in

• 4
in

2
slug/in, sec

slug

rad/sec

Table 4-I Structural Data

spacial variable along the bending axis of the beam (Fig. 2-i), and

the nodes of the structure are marked with a different symbol for each

approximation order. ( (.)" indicates second derivative with respect

to s.)

For the Hermite spline approximation scheme, Figures 4-1a and 4-1b

f!

show the functional control gain component Cfn and Cgn evaluated by

using 4,6,8 and I0 beam element model. These figures indicate that

the functional .control gains converge for 8 beam element model; i.e.,

n=17. For the B-spline approximation scheme, Figures 4-2a and 4-2b

I!

show the functional control gain component Cfn and Cgn evaluated by

using 4,6,8 and i0 beam element model. These figures indicate that

the functional control gains converge for 8 beam element model; i.e.,
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n=9. Because cubic B-splines have continuous first and second

II

derivatives, the #fn is continuous at the nodes of the structure. For

the normal mode approximation scheme, Figures 4-3a and &-3b show the

II

functional control gain component _fn and _gn evaluated by using

5,7,9,11 and 13 modes (including one rigid body mode). These figures

indicate that the functional control gains converge for 9 noraml mode

model; i.e., n=9.

Figures 4-1 through &-3 indicate that the convergence of the B-

spline approximation is much faster compared to the convergence of the

Hermite splines. This will be our justification of using B-splines

for integrated structural and control optimization. Note that similar

functions (functional estimator gains) exist for observer gains (see

G3 and G&) which can be used with the functional control gains to

determine the convergence of the optimal compensators for distributed

models.
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Chapter V

SENSITIVITY OF CLOSED-LOOP EIGENVALUES AND ROBUSTNESS

5.1 First-Order Sensitivity of the Closed-Loop Eigenvalues

In Section 3.4 we assume that the plant is known exactly, so that

the matrices A, B and C in the compensator are the same as those in

=he plant. Now we assume that the plant is a function of a parameter

, so that

A = A(B),

B = B(S),

c = c(B).

(5.1)

(5.2)

(5.3)

The compensator is designed for a nominal parameter value B=, and the

closed-loop system is

z = Ac_(B)z, (5.4)

where the state z(t) is a 4n-vector, and

[ A(B) -B(_)F ]Ac£(_) = GC(B) [A(Be)-B(_0)F-GC(B0)] " (5.5)

The gain matrices F and G are determined by some compensator design

philosophy.

When 8 = 80, we have the situation in Section 3.4. Here, we

study the first-order sensitivity of the eigenvalues of Ac£(B) with
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x = Ax+Bu

y=Cx

PLANT

COMPENSATOR

=(A-BF-GC)_+Gy

u = -F_

Figure 5-I. Closed-Loop System.

respect to an error between the true plant parameter 6 and the nominal

value _. assumed for compensator design. By standard results

[LI,PI,NI], we have

Ac£ _ diag[Z'iAc£BZ], (5.6)

where diag[. ] means the diagonal matrix with the same diagonal

elements, Ac£ is the 4nX4n diagonal matrix containing the eigenvalues

of Ac£ , Z is the 4nX4n matrix whose columns are the eigenvectors of

Ac£, and

Ac£ =_Ac£= [ A_ -BBF
l

GCB 0 j " (5.7)
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The subscript 8 always indicates the partial derivative with respect

to 8. Using (3.51) and (3.52) for the nominal parameter value 8., we

obtain

and

ZCB.) =
Xc X cX 1
Xc [XcX - Me] (5.8)

-1 r,x: 1-_xl_ _xll
e e

Z (80) = I X-le "X'le (5.9)

where X is the 2nx2n matrix whose columns are the eigenvectors ofe

[A(8.)-GC(B.)], X is the 2nx2n matrix whose columns are the
c

N

eigenvectors of [A(8.)-B(8.)F], and the 2nX2n matrix X satisfies

= "IB(8.)FXe,hcX - XA e -X c (5 I0)

where h is the 2nX2n diagonal matrix containing the eigenvalues ofe

[A(S0)-GC(S0)] (estimator eigenvalues) and h c is the 2nx2n diagonal

matrix containing the eigenvalues of [A(B0)-B(S0)F] (controller

eigenvalues). We assume that the eigenvalues of Ac£(Bo) are distinct,

so that there exists a unique solution to (5.10). Note that the

spectrum of Ac£(Sa) is the union of the spectrum of [A(S0)-B(S0)F] and

the spectrum of [A(B0)-GC(B0)]. Carrying out the multiplication in
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(5.6)

where

and

yields

_BAc_(Ba)

r I o

= diag[ 0 r2]

rl = Xc-I[A_(_°)'BB (B°)F]Xc

" _'I[AB(B°)'BB(B°)F'GCB(Be o)]X c

r z = XelBB(B,)FXe+ XeI[A_(B,)-BB(Bo)F-GCB(B,)]XcX.
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5.2 Sensitive and Insensitive Control Designs

Consider the following Taylor series expansion of a closed-loop

eigenvalue with respect to a parameter 8

or

where

2

Xc_ = Xc_(So) + Xc_So)aB + lX .(8.)68 + ...cz88
(5.14)

A

6kc_-" kc_-kc_(Sa) (5.15)

2

= XcZ_8o)68 + IX .(80)68 + ...c_88

and 8a is the nominal value of 8.

(5.16)

For insensitive control designs, we

want

Re[6_c£(80) ] : 0 j = i, ..., 4n, (5.17)
J

where 4n is the dimension of the Ac£ matrix. Equation (5.11)

represents the first partial derivatives of the closed-loop

eigenvalues, and the second partial derivatives of the closed-loop

eigenvalues follows from (A.17)

T T

[yjAc£sZi] [YiAc£sZ j], j = i, ..., 4n, (5.is)

4n

Xc£. = 2 Z

J88 i=l

i_j [Xc£ '" Xc£ !
z j
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where yj is the left eigenvector corresponding to %c£. and z.1 is the

J

right eigenvector corresponding to _c£." The objective of (5.17) can
1

be obtained to a certain extend by following certain guidelines in the

control design. In the following discussion, we drop the argument _o

for convenience. Consider the following cases:

i. A _ ko£ for i = i, 2n.C. . " "''

1 1

2. _ _ for
e. _o£.
1 1

i = I, ..., 2n.

3 I ),->, I-_o
C. e.
i j

for some i and j where i,j = i, ..., 2n.

i ActT Xczl _ 0 for some i and j, i#j and i,j = I, ..., 4n.

i j

.
i Re(_c£ ! i >> I Im(_c_ ! i # 0

1 i

for some i, i = i, ..., 4n.

Where _o£ is an eigenvalue of matrix A, _ is a controller
• C.
1 1

eigenvalue,
e.
i

is an estimator eigenvalue, Re(.) implies to the real

part of a complex number and Im(.) implies to the imaginary part of a

complex number.
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Case-1

for
_c. _o£.

I i

i = i, ..., 2n.

As the eigenvalues of [A-BF] matrix (controller eigenvalues) converge

to the eigenvalues of the open-loop system matrix A, the matrix

product BF converges to the null matrix. Consider equation (5.10)

N N

A X - XA = -X'IBFx = O. (5.19)
C e C e

For distinct closed-loop eigenvalues, (5.19) indicates that

X = 0. (5.20)

In view of (5.20), (5.11) yields

hcaB= [ Ac_A°£B0 0],0
(5.21)

where Ao£ is the 2nx2n diagonal matrix containing the eigenvalues of

matrix A.

Case-2

-_ for
)'e. )'o£.

1 1

i = I, ..., 2n.

As the eigenvalues of [A-GC] matrix (estimator eigenvalues) converge

to the eigenvalues of the open-loop system matrix A, the matrix

product GC converges to the null matrix. Consider equation (5.10)

N

A X - XA = -X'IBFx •
c e c e

(5.22)

Adding identity to the right hand side, we obtain
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or

A X - XA -- -X'IBFx + [XclAXe - X'IAx ]c e c e c e

AcX - XAe = xcl[A'BF]Xc[XclXe ] - [xclXe] XelAx e.

In view of (3.45) and (3.46), we see that

X'I[A-BF]X = A .
C " C C"

-lAx = Ae=Xe e Ao£"

From (5.24) - (5.26), it follows that

N

Ac[X-xclXe ] - [X-xclXe]A = O.
e

For distinct closed-loop eigenvalues, (5.27) indicates that

or

N

X - X'iX = 0
c e

X= X'iX .
c e

In view of (5.29), (5.11) yields

0

Ae8 Ao£_ ]"Ac£B= [ 00 =
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(5.30)



I

I

I
I

I
l

I
!
I
I

I

l
I

I
l

l
I

I
I

Case-3

IX-X J_O
C. e.

i j
for some i and j where i,j = I, ..., 2n.

Consider equation (5. I0)

~ ~ A

A X - XA = -X'IBFx = Q.
C e c e (5.31)

From (5.31), it follows that

~

xij= qij

C. e.
i j

for i,j = i, ..., 2n. (5.32)

~

Equation (5.32) indicates that the i-j element of the matrix X

approaches infinity like the reciprocal of the difference between the

.th .th
1 controller eigenvalue and the j estimator eigenvalue, except in

~

rare special circumstances. This element of X in general enters the

derivative of each closed-loop eigenvalue, according to (5.11), and

produces the large sensitivity when estimator eigenvalues are close to

controller eigenvalues.
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Case-4

1%c£T %c£. I _ 0 for some i and j, i#j and i,j = i, ..., 4n.
i j

Equation (5.18) indicates that the second partial derivatives of the

closed-loop eigenvalues approache infinity like the reciprocal of the

difference between any two closed-loop eigenvalues, except in rare

special circumstances. Therefore, as 1%c£" %c£. I _ 0 for some i and
i j

j, i#j, and i,j = I, ..., 4n, then

I Xc¢" I _ "
for k= i, ..., 4n. (5.33)

_BB

Note: If an eigenvalue is complex with a small imaginary part then

I 1

I( _c£" _c£ )I = 21Im(_c£)l = large. (5.34)

Case-5

I Re(_c£). I >> I Im(_c£ ! I # 0 for some i, i = I, ..., 4n.
l l

Consider the closed-loop state equation

Ac£Z = Ac£Z. (5.35)

Note that if _c£ is a complex eigenvalue of the closed-loop system

matrix, then _c£ is also an eigenvalue. Which implies

Ac£Z = Xc£Z, (5.36)
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where (_) indicates complex conjugate. From (5.35) and (5.36), we see

that

Ac£_ = o_ - w_, (5.37)

Ac_ = o_ + wX, (5.38)

where

_c£ = o + jw, (5.39)

z = _ + j_. (5.40)

Note that (5.37) and (5.38) indicate that if

a l >> l w l, (5.41)

then _ and _ become nearly linearly dependent. Which implies that

Z-I_ ". (5.42)

In general, elements of matrix Z-I enter the derivative of each

closed-loop eigenvalue, according to (5.6), and produces the large

sensitivity when closed-loop eigenvectors become nearly linearly

dependent. Similarly, elements of X "I and X "I enter the derivative of
c e

each closed-loop eigenvalue, according to (5.11), and produces the

large sensitivity when controller eigenvectors and/or estimator

eigenvectors become nearly linearly dependent.
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Guidelines

In summary, we present

sensitive control designs:

the following guidelines for less

I. For smaller first

eigenvalues, have

ix-x I>>0
C. e.

1 J

2. For smaller second

eigenvalues, have

( Xc__ Xc_.l >> 0
i j

3. For less sensitive

[A(_,)-B(5,)F] matrix), have

ix l>Ix 1
C. e.

1 1

4. For less sensitive observer

[A(_0)-GC(_0)] matrix), have

partial derivatives of the closed-loop

i,j = i, ..., 2n. (5.43)

partial derivatives of the closed-loop

i#j and i,j = i, ..., 4n. (5.44)

controller eigenvalues (eigenvalues of

i = I, ..., 2n. (5.45)

eigenvalues (eigenvalues of

t x I > I x I i = 1, ..., 2n. (5.46)
e. c,

1 1

5. Keep the closed-loop, the controller and the estimator eigenvectors

from becoming nearly linearly dependent.

6. Increase number of actuators and/or sensors.

The following section illustrates the effect of large eigenvalue-

sensitivity and some of the above guidelines on robustness.

Robustness means insensitivity of the closed-loop performance with

respect to plant uncertainities.
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5.3 Example

The structure in Figure 2-1 consists of a uniform Euler-Bernoulli

beam cantilevered to a rigid hub at one end, with a point mass m 1

attached to the other end of the beam. The hub can rotate about its

fixed center, point O, and the control is a torque u(t) applied to the

hub. There are two sensors, which measure the rigid-body angle 8 and

the displacement of the point mass ml, w(t,_).

In illustrating the effect of eigenvalue-sensitivity on

robustness, we use a finite element model of the structure,

constructed with three uniform beam elements and cubic B-splines as

interpolation functions (see Sec. 2.3 and Chapter 4). Because cubic

B-splines have continuous first and second derivatives, the three-

element model of the structure in Figure 2-1 has four degrees of

freedom, including the rigid-body mode.

We model Voigt-Kelvin viscoelastic damping in the beam, which

means that the damping matrix is a constant times the stiffness

matrix. We take the state vector x(t) to represent the modal

displacements and velocities of the three-element�four-mode model, so

that the matrix A is

ACB) = _B_2 .c._2 , (5.47)

where _ is a 4x4 diagonal matrix containing the natural frequencies of

the model, co is the damping coefficient and _ is an uncertain

parameter with nominal value Bo= 1. The first element of _ is zero,
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corresponding to the rigid-body mode. When we refer to the natural

frequencies of the structure, we will mean the three nonzero elements

of _ only. We assume that the matrices B and C do not depend on B.

Of course, this model may not be sufficiently accurate for

designing a compensator for the real structure. In [G3, G4, G5], we

have studied the question of how accurate a finite element model is

necessary for compensator design and how many modes must be

represented in the estimator. While robustness with respect to

truncation errors is as important as robustness with respect to

parameter errors, we assume here that the three-element model is the

structure, _o illustrate best the effect on robustness of the

eigenvalue-sensitivity discussed in the previous sections.

For our four-mode model of the structure, based on Be, we

designed a family of linear-quadratic-gaussian (LQG) compensators

(Sec. 3.3). The control gain for all compensators is computed with

ac= 0.2, (5.48)

R = 0.01, (5.49)c

and Qc such that

xTQc x =500e2+ 2(Total Energy). (5.50)

Total energy means kinetic energy plus elastic strain energy in the

structure. The positive scalar a (added to the diagonal element of
c

A(B.) in the algebraic matrix Riccati equation 3.27) guarantees that

the eigenvalues of [A(B0)-BF] (the controller eigenvalues) have real
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PARAMETER

hub radius r

hub moment of inertia I
o

beam length

beam mass per unit length %

2nd moment of cross sectional area I

modulus of elasticity E

damping coefficient c
o

point mass m 1

fundamental frequency of undamped structure

VALUE

i0

102

102

10 -2

4/3

104

-3
10

1

0.967

I/NIT

in

s lug. in 2

in

s lug/in

4
in

2
s lug/in, sec

s lug

rad/sec

Table 5-I. Structural Data.

parts to the left of -a .
c

The compensators differ in the estimator gains, which are

computed with

a = variable = 0.0, 0.2, 0.4, ..., 3.8,
e (5.51)

= [I0 0]Re 0 10 ' (5.52)

[o o]Qe = 0 I ' (5.53)
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where each block in Qe is a 4x4 matrix.

to the diagonal element of A(B.)

equation 3.30) guarantees that the

The positive scalar a (added
e

in the algebraic matrix Riccati

eigenvalues of [A(_0)-GC] (the

estimator eigenvalues) have real parts to the left of -a . Note that
e

each estimator is a Kalman-Bucy filter for the control system with A

replaced by [A(_.)+Iae].

We designed twenty estimators for the values of a indicated in
e

(5.51), and with each of these estimators, we formed the closed-loop

matrix Ac£(8 ) in (5.5) for a range of _'s. Our measure of robustness

for a compensator is how much 8 can vary, from the nominal value of i,

before the closed-loop system becomes unstable; i.e., before some

eigenvalue of Ac£(_ ) has nonnegative real part. Figure 5-2 summarizes

the results of the robustness test. The solid line connects the

eigenvalues of [A(_0)-BF], which are the same for each compensator.

(Only eigenvalues with positive imaginary parts are plotted.) For

each compensator, a dashed line connects the eigenvalues of

[A(_0)-GC], and the number above each of these estimator eigenvalue

plots indicates the percent change in _ (from the nominal value of

i) at which the closed-loop system with that compensator becomes

m

unstable. We prefer to look at 4 _ because it represents the change

in open-loop plant frequencies.
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The compensators that place the estimator eigenvalues close to

the controller eigenvalues produce a nonrobust closed-loop system,

allowing no more than -II_ modeling error in the natural frequencies.r

As the distance between estimator eigenvalues and controller

eigenvalues increases, the robustness increases until the compensator

will tolerate up to ±22% frequency error and maintain a stable

closed-loop system. We have found that the most robust compensator

represented in Figure 5-2 also will tolerate up to ±22% error in any

one of the three plant frequencies when the others remain at their

nominal values. It is important to note that the robustness increases

as the estimator eigenvalues move away from the controller

eigenvalues, even though the performance also increases in the sense

that estimator errors decay at faster exponential rates. (Guideline

number I.)

Eventually, for a > 2.6, the robustness starts to decrease
e

again. Close examination of our numerical results indicates that the

estimator eigenvectors approach linear dependence for the largest

values of a , so that large terms enter the right sides of (5 12) and
e

(5.13) in the matrix X "I. This is another demonstration of the
e

relationship between robustness and sensitivity of closed-loop

eigenvalues with respect to parameter errors. (Guideline number 5.)

In general, as the real part of a conjugate pair of complex

eigenvalues becomes large negatively, the corresponding conjugate

pair of eigenvectors become nearly linearly dependent. In our
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R,= 10.0

_," t3.8o3.6 ..... 0.2.0l

OPEN-LOOP EIGENVRLUEOBSERVER E[GENVRLUE
CONTROLLER EIGENVRLUE

F I' I I I I I I I I I I I I I I l ! I

÷ ÷

I /

I I

I

I

I

I I

I I

I I I t I I I I I I I I I I I I _ \ \
I I I I I _ I I I I I I I I I I _ \ \ \

I I I I I I I I 1 I I t I I I I _

-8. O0 -6, 40 -Lt.80 -3, 20 -1 . 60

flEflL

Figure 5-2. Robustness Test Results.
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example, this happens first for the eigenvalues nearest the real axis,

whose frequency is between 0.035 and 10 -6 rather than zero, as the

graph might suggest• And it happens to a lesser extent for the pair

of eigenvalues with frequency approximately I.

Another reason that the robustness cannot be improved more just

by moving all of the estimator eigenvalues farther to the left is that

the pairs of controller and estimator eigenvalues near the real axis

cause large second-order sensitivity in the closed-loop eigenvalues.

(Guideline number 2 ) Note _0_ second-order _ .....I_• _,,=_ e_g_,Lv=_ue sensitivities

with respect to the uncertain parameter involve the reciprocal of the

difference of any two closed-loop eigenvalues.

To reduce both the first-order sensitivity produced by almost

linearly dependent estimator eigenvectors and the second-order

sensitivity produced by closed-loop eigenvalues near the real axis, we

designed a new compensator with

a = 0.02, (5.54)c

Re= 1.0, (5.55)

Qc--

12
1.25

6.2 '
35,

0

a = 0.25,
e

R= [i 0e 0 1 ]'

0

--+ ............... Xl000,
i
I

0
I

(5•56)

(5.57)

(5.58)
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Qe =

I

0 l 0
I

........... + ............ XIO0.

I
1

i I0
0 10

20

(5.59)

The resulting closed-loop eigenvalues are shown in Table 5-2. With

this compensator, the closed-loop system first becomes unstable at

m

_ = -50%, as opposed to -22%

represented in Figure 5-2.

for the most robust compensator

Eigenvalues of [A(B0)-BF]

-0.4221±i0.5805

-0.5915±ii.0571

-0.6861±i3.3011

-0.6773±i7.3835

Eigenvalues of [A(B,)-GC]

-0.5347±i0.1362

-1.2888±i2.2618

-2.2686±i5.7000

-12.914±i13.902

Table 5-2. Closed-Loop Eigenvalues with Robust Compensator.

The above numerical results illustrate the significant effect

that the closed-loop eigenvalue sensitivity derived in Section 1 has

on robustness with respect to modeling errors. The results in Section

2 suggest and the example confirms that controller and estimator

eigenvalues should be separated for a robust design. Almost linearly

dependent estimator eigenvectors or controller eigenvectors and large

second-order eigenvalue-sensitivity diminish robustness also.

69



I
a

I
I
i,
i
I
I
I
l

I
I

I
I

I
i
I
i

In the example, we chose to move the estimator eigenvalues to the

left of the controller eigenvalues. While such relative placement of

controller and estimator eigenvalues is used frequently in compensator

design so that the faster decaying estimator error will make the

compensator approximate full-state feedback, we have seen no mention

in the literature of the relationship demonstrated here between

controller/estimator eigenvaiue location and robustness. We have

found that, to improve robustness by reducing closed-loop eigenvalue

sensitivity, the eigenvalue separation may be achieved as well by

placing some or all of the controller eigenvalues sufficiently to the

left of nearby estimator eigenvalues or, not surprisingly, by

separating imaginary parts of eigenvalues. This is important in

controlling complex flexible structures, which often have lightly

damped modes along with heavily damped modes, making it impractical to

place all estimator eigenvalues to the left of all controller

eigenvalues.

Although the analysis in the previous sections and the example

deal with a single uncertain parameter, it should be clear that the

results apply to any number of parameters. The formulas in Section 1

give the sensitivities of the closed-loop eigenvalues with respect to

each parameter.
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Chapter VI

SENSITIVITY OPTIMIZATION FOR FIXED STRUCTURE

Consider the following Taylor series expansion of an eigenvalue

x(S) = x(So) + xB(S0)6S + ½xSS(S0)_B2+ (6.1)o Q e

or

where

A

6),(S) = ),(S)-),(So) = ),B(B.)aB + ½),SS(Bo)aS2+ • Q Q _
(6.2)

2
B = w , (6.3)

aS = B-S0, (6.4)

D0 is the nominal value of B, and _ is a natural frequency.

chain-rule, equation (6.2) can be expanded in terms of w as

6X(w)=2w_XS(S0)e+[2_XBB(B0)+_B(B0)]_2+ ..., (6.5)

where

Using the

t = (w/w0)- i. (6.6)

A closed-loop system is robust with respect to w if

Re[(6Xc£(W) ] = 0 j = i, ..., 4n, (6.7)
3

where 4n is the dimension of the closed-loop eigenvalue problem.

71



!

a
l
tl

If

!
i

|
!

II
tl
II
li
II
II
II
Ii

6.1 First-Order Sensitivity Optimization

Problem Statement

Find elements of the gain matrices F and G (design variables)

that minimize the first-order sensitivities of the closed-loop

eigenvalues with respect to plant uncertainties (natural frequencies),

subject to eigenvalue constraints but no side constraints on design

variables; i.e., choose F and G to minimize

_n

J(F,G)={ Z [Zi2lRe(VX&!lw] =
½} ,

i=l i

subject to

Re(Xc!£ S max Re(Xc.) _ Xe(Xc!U
i i i i

Re(Xe) £ _ max Re(X e ) S Re(_ )u
• . e.
i i i i

£
rain IIm(i_)l > Im(i )

i i i

min IIm(i )l _ Im(X-) &
e. _.

i i

In (6.8)-(6.12),

_=I _.... _,-_J,
2 2

coT= [ wI ... =n ],

2

6.----" (a).,

i 1

and

F = rX2n control gain matrix,

i = I, ..., 2n,

i = i, ..., 2n,

i = i, ..., 2n,

i = I, ..., 2n.

(6.8)

(6.9)

(6.10)

(6.ii)

(6.12)

(6.13)

(6.14)

(6.i5)
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r = number of actuators,

n = number of structural modes used in compensator design,

G = 2nXm estimator gain matrix,

m = number of sensors (measurement),

= ith
C.
1

controller eigenvalue,

X ith= estimator eigenvalue,
e.
l

th

lc£ _ i
i

closed-loop eigenvalue,

.th
W. = I
i

uncertain plant parameter (natural frequencies),

.th
_. = 1
l

scalar weighting factor,

Re(.) = real part of a complex number,

Im(.) = imaginary part of a complex number,

max(.) = maximum value,

rain(.) = minimum value,

I.I = absolute value,

(.)& = lower bound,

(.)u = upper bound,

(.)a = nominal value.

In problems with a rigid-body mode, w I is zero and we use only the

sensitivities with respect to the nonzero frequencies in (6.8), so

2

that -_ 1 and w I are not included in (6.13) and (6.14).
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6.2 Second-Order Sensitivity Optimization

Problem Statement

Find elements of the gain matrices F and G (design variables)

that minimize the second-order sensitivities of the closed-loop

eigenvalues with respect to plant uncertainties (natural frequencies),

subject to eigenvalue constraints but no side constraints on design

variables; i.e., choose F and G to minimize

J(F,G)={ Z [_i21Re(Vkc_!lu
i=l z

2½
+ ri[2wTlRe(Hi) i=+]Re(Vkc£!lw] ] } ,

1

subject to

(6.16)

Re(Xc)_ _ max Re(kc.) _ Re(X_) u
z i z z

Re(ke)£ _ max Re(k e ) _ Re(ke)U
i i i i

In (6.16),

t
min I Im(k )1 > Im(k c)

(,_,

£
min [Im(ie! I -> Im(Xe!
i i i

i = i, ..., 2n,

i = i, ..., 2n,

i = I, ..., 2n,

i = i, ..., 2n.

(6.17)

(6.i8)

(6.19)

(6.20)

H = hessian matrix,

r. = scalar weighting factor.
1
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Although we have some experience in this area, we have not been

able to achieve significant improvement using the second-order

sensitivity optimization compared to the first-order sensitivity

optimization. The most robust designs are obtained by using small

values of scalar weighting factors ( r.<o.l, i=l, ..., 4n ) in the
l

objective function (6.16). Close examination of our results indicates

that there are considerable numerical errors involved in the second-

order sensitivities of the closed-loop eigenvalues (5.18), which are

due to'the truncation errors in the closed-loop eigenvectors. It has

been our experience that in minimizing the first-order sensitivities

of the closed-loop eigenvalues with respect to natural frequencies,

one also significantly reduces the second-order sensitivities of the

closed-loop eigenvalues.

Because the second-order sensitivity optimization does not offer

significant improvement in robustness compared to the first-order

sensitivity optimization, and more efficient first-order sensitivity

numerical optimization, only the first-order sensitivity optimization

results are presented in the next section.
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6.3 Example

Consider the structure shown in Figure 2-1. A uniform Euler-

Bernoulli beam is cantilevered to a rigid hub at one end and a point

mass m I is attached to the other end of the beam. The hub can rotate

about its fixed center, point O, and the control is a torque u(t)

applied to the hub. There are two sensors, which measure the rigid

body angle 8 and the displacement of the point mass ml, w(t,£).

In _11,,_trating the effectivness of first-order closed-loop

eigenvalue-sensitivity optimization on robustness, we use a finite

element model of the structure, constructed with ten identical beam

elements and cubic B-splines as interpolation functions (see Sec.

2.3). Because cubic B-splines have continuous first and second

derivatives, the ten-element model of the structure in Figure 2-1 has

eleven degrees of freedom, including the rigid-body mode.

We model Voigt-Kelvin viscoelastic damping in the beam, which

means that the damping matrix is a constant times the stiffness

matrix. Table 6-1 shows the structural data used for the

calculations. We take the state vector x(t) to represent the first

five modal displacements and velocities of the ten-element model, so

that the matrix A is

[0 i]2 2
A(_) = ._ -co_. (6.21)

where _ is a 5X5 diagonal matrix containing the natural frequencies

(uncertain parameters) of the model, c a is the damping coefficient and
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PARAMETER

hub radius r

hub moment of inertia I
o

beam length

beam mass per unit length

2nd moment of cross sectional area I

modulus of elasticity

damping coefficient

point mass

E

c
o

m I

fundamental frequency of undamped structure

VALUE

i0

10 2

10 2

10 -2

4/3

5XI04

10 -3

1

2. 159

UNIT

in

slug.in 2

in

s lug/in

4
in

2
slug/in, sec

s lug

rad/sec

Table 6-1 Structural Data.

_0 is a 5X5 diagonal matrix containing the nominal natural frequencies

of the model. The first element of _ is zero, corresponding to the

rigid-body mode. When we refer to the natural frequencies of the

structure, we will mean the four nonzero elements of _ only. We

assume that the matrices B and C do not depend on uncertain

parameters. (See Eqn. 5.5).

For our five-mode model of the structure, based on the nominal

values of the natural frequencies, we designed an initial linear-
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quadratic-gaussian (LQG) compensators (see Sections 3.3 and 5.3) with

a = 0.0, (6.22)c

R = 1.0, (6.23)C

Qc--

8
5 l

I0 i00 J 0
i000 I

i

0 I 0

XlO00, (6.24)

a = 0.3,
e (6.25)

:[iRe 0 0]1 ' (6.26)

Qe-

i

0 I 0
t

............. + ............. Xl000.
I

I0
i 1

0 1
I 1

2O

(6.27)

We take the gain matrices F and G of the initial compensator and

use them as the initial guess in the first-order sensitivity

optimization problem of Sec. 6.1. For this example, we have the IXl0

control gain matrix F and the 10X2 estimator gain matrix G, so that

there are 30 (control) design variables. The scalar weighting factors

and lower bounds and upper bounds in (6.8)-(6.12) are

Re(kc)U= 0.95XRe[k (F0)] i = i, 2n, (6.28)
• C, "'''
l l

Re(ke)U= -0.40 i = I, ..., 2n, (6.29)
l
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Im(X )£= 0.20
C...

1

Ira(X_) £= 0.20

1

i )1 ' IIm(Ac£)l]
1 1

i = 1, ..., 2n, (6.30)

i = i, ..., 2n, (6.30)

i = 1, ..., 4n.
(6.31)

Note that (6.28) indicates that the magnitude of the real part of the

controller eigenvalues can decrease by 5% only.

The optimum design was obtained by using the ADS optimizer (Ref.

V2), where the sequential unconstrained minimization technique (SUPS)

using the exterior penalty function method, and Broydon-Fletcher-

Goldfarb-Shanno (BFGS) variable metric method for unconstrained

minimization of pseudo-objective function (created by the exterior

penalty function method) were selected, see [V1]. Also, the 30 design

variables were scaled by the ADS program, and finite difference

gradients were used in the optimization problem. Since there are

considerably more truncation errors involved in evaluation of the

closed-loop eigenvectors compared to the closed-loop eigenvalues, and

the gradient of the objective function (6.8) involves the first-order

sensitivity of the closed-loop eigenvectors with respect to the

natural frequencies, the finite difference gradients result in better

numerical optimization compared to the analytic gradients (see

Appendix B). The optimization converges in 1 su_fr iteration which

includes 22 unconstrained minimization (BFGS) iterations. Figure

(6-1) shows the iteration history of the unconstrained minimization
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(BFGS) where the objective function J(F,G) (normalized with respect to

it initial value 10.5998) is reduced by 82%. For the optimized

design, only the constraint on the real part of the controller

eigenvalues (6.9) is active. Table 6-2 lists the design variables of

the initial and the optimized compensators. Table 6-3 and Figure 6-2

show the open-loop and the closed-loop eigenvalues of the initial and

the optimized designs. In Figure 6-2, the dashed lines connect the

eigenvalues of the initial design and the solid lines connect the

eigenvalues of the optimized design.

Our measure of robustness for a compensator is how much the

natural frequencies can vary, from their nominal values, before the

closed-loop system becomes unstable; i.e., before some eigenvalue of

Ac£ has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant

by a constant percentage times a variation factor (1,0 or -I for each

natural frequency), while maintaining the original damping of the

plant and the original natural frequencies in the compensator. Tables

6-4 through 6-7 present the robustness test results of the full-state

feedback and the closed-loop initial and optimized designs. (Full-

state feedback means that the entire state vector is measured, so that

no estimation is required in the closed-loop system.) Unless the term

full-state feedback is emphasized, by closed-loop design or

compensator we will mean a closed-loop design or a compensator which

uses estimation. In each one of the robustness tables, each row

represents nine full-state feedback or closed-loop designs where the
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Flj

89. 443

-47.212

-32. 144

-56.023

-90.007

181.06

-24.205

-12. 242

- 15. 444

-17. 147

INITIAL DESIGN

Gjl

247.57

-0.0360

-0.0251

-0.0028

-0.0131

163.33

-0.0593

-0.3045

-0.3024

-1.2148

Gj2

0.7453

9.9207

-0.3027

0.0944

0.7929

0.5014

27.796

35.7 lO

34. 285

136.14

FIj

76.004

-43.206

-122.42

30.085

-812.43

185.84

-28.734

-12.401

-15.720

-43.750

OPTIMIZED DESIGN

Gjl

245.98

-O.0869

-0.0811

-0.0515

-0.0391

165.15

-0.0051

-0.2879

-0.2831

-1.2100

Gj2

0.8780

9.5176

0.1453

0.0741

-0.8872

0.6273

27.913

35.801

34. 216

136.09

Table 6-2. Design Variables of the Initial and the Optimized

Compensators.

natural frequencies of the plant were perturbed by a percentage

(indecated by a percentage sign %) times a variation factor for each

natural frequency (listed in the left portion of the tables). In

these tables, " " indicates a stable design and "x" indicates an

unstable design.

For the initial compensator, Table 6-4 indicates that the closed-

loop system with full-state feedback becomes unstable for 50%

v=_=t_u,L_ in -_p_,L_ L_uenules, and Table 6-6 shows that the closed-
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loop system with the compensator becomesunstable for 20% variations

in plant frequencies. For the optimized compensator, Table 6-5 shows

that the closed-loop system with full-state feedback becomes unstable

for 50% variations in plant frequencies, and Table 6-7 shows that the

closed-loop system with the compensator becomes unstable for 60%

variations in plant frequencies. This indicates a considerable

improvement (factor of 3) compared to the robustness of the initial

design. Note that the optimized compensator results in an unstable

closed-loop system only when the variations in natural frequencies are

such that the first and the second natural friquencies cross over. In

addition, note that the robustness of the optimized design is better

than the robustness of the full-state feedback initial and optimized

designs. For each of the above robustness tests, there are 720

variations. That is

N = [n_' -l]n,, (6.32)

where

N = 720 is the total number of variations,

nl = 3 is the number of variation factors (1,0 or -i),

nz = 4 is the number of uncertain parameters,

n3 = 9 is the number of variation percentages (10%, ..., 90%).

Table 6-8 summarizes the number of variations out of 720 which result

in unstable designs.

In investigating robustness with respect to unmodeled modes, we

connected the initial and the optimized five-mode compensators (one at
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a)

OPEN-LOOP

E IGE NVA LUE S

0.0

0.0

-0. 0023+i2. 1583

-0. 0258+i7. 1826

-0. 1212±i15.567

-0.4208+i29. 007

Initial Design.

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.5415±i0.5580

-0,5721±i2.2293

-0.3937±i7.1932

-0.5001±i15.575

-0.7097±i29.012

ESTIMATOR

-0.9598±i0.5876

-2.5932±i5.0472

-8.0933±i12.011

-3.9348±i15.290

-8.5054±i29.711

!
g

e
!

i

H

e
a

!
I

OPEN-LOOP

EIGENVALUES

b)

0.0

0.0

-0. 0023±i2. 1583

-0. 0258+i7. 1826

-0. 1212±i15.567

-0. 4208±i29. 007

Optimized Design.

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.5437±i0.4447

-0.5528±i2.1675

-0.4901±i7.5214

-0.4790±i15.448

-1.2052±i29.340

ESTIMATOR

-0.9536±i0.6092

-2.2813±i5.0528

-8.4082±ii0.656

-3.0969±i15.487

-6.7944±i33.110

Table 6-3. Open-Loop and Closed-Loop Eigenv_1-es of the Initial

the Optimized Designs of the 5-Mode Compensators.
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OPEN-LOOP EICENVRLUE

a OBSERVER EIGENVRLUE

O CONTROLLE_ EIGENVgLUE

.... INITIAL OESIGN

OPTIMRL OESIGN

T i
-18.00 -15.00 -12.00

Figure 6-2. Open-Loop and Closed-Loop Eigenvalues of the Initial and

the Optimized Designs of the 5-Mode Compensators.
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NATURAL FREQUENCY

VARIATION FACTORS

w 2 w3 w4 w 5

1

-i

1

1

1

1

1

1

-I

-I

-i

-I

1

-I

-I

-I

0

0

1 1 1

1 "1 1

-1 1 1

1 -1 1

1 1 -I

1 -1 -1

-1 1 -I

-i -1 1

-1 1 1

1 -1 1

1 1 -1

-1 -1 -1

-1 -1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1 1 1

-1 1 1

0 1 -1 1

0 1 1 -i

0 -1 -1 -1

0 1 -1 -1

0 -1 1 -1

0 -1 -1 1

1 0 1 1

-1 0 1 1

1 0 -1 1

1 0 1 -1

-1 0 -1 -1

1 0 -1 -1

-1 0 1 -1

-1 0 -1 1

1 1 O" 1

-1 1 0 1

1 -1 0 1

1 1 0 -1

-1 -1 0 -1

1 -1 0 -1

-1 1 0 -1

-1 -1 0 1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X X

X

X

X

X

X

X X X X X

X X X X X

X X X X X

X X X X x

x

X x x x X

x x x x X

x X x x x

X x X X

X X X X

X X X X

X x X X

X X X x

X

X

X

x

x

X

X

x

X

X

X

X

X

X

x X X X X

X

X X X x X

X X x X X

Table 6-4. Robustness Test Results of the Full-State Feedback

Initial Design.
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I

NATURAL FREQUENCY

VARIATION FACTORS

w2 _3 w4 _5

i i i 0

-i 1 1 0

1 -1 1 0

1 1 -1 0

-1 -1 -1 0

1 -1 -1 0

-1 1 -1 0

-1 -1 1 0

0 0 1 1

0 0 1 -1

0 0 -1 -1

0 0 -1 1

0 1 0 1

0 1 0 -1

0 -1 0 -1

0 -1 0 1

0 1 1 0

0 1 -1 0

0 -! -! 0

0 -I 1 0

1 0 1 0

1 0 -i 0

-I 0 -I 0

-I 0 1 0

1 0 0 1

1 0 0 -i

-i 0 0 -i

-I 0 0 1

1 1 0 0

1 -i 0 0

-i -i 0 0

-i 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-i 0 0 0

0 -I 0 0

0 0 -i 0

0 0 0 -i

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X X

X

X

X X X X X

X

X X X X X

X X X X X

X

X

X

X

)C

X x x x x

x x X x x

X X X X X

X X X X X

X

x x X X X

x X X X x

x x X X x

x

X

Table 6-4. (Cont.) Robustness Test Results of the Full-State

Feedback Initial Design.

87



i

!

I
i

I
l
!

I

I
I
I

g
!

l
!

I
I

I
!

NATURAL FREQUENCY

VARIATION FACTORS

w2 w 3 w4 w5

1 1 1 1

-i 1 1 1

1 -I 1 1

1 1 -i 1

! ! ! -!

1 1 -i -I

1 -I 1 -I

1 -I -i 1

-i -i 1 1

-i 1 -i 1

-i 1 1 -i

-i -i -I -i

1 -1 -1 -1

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

0 1 1 1

0 -1 1 1

0 1 -i 1

0 1 1 -i

0 -I -I -I

0 1 -i -I

0 -I 1 -I

0 -i -I 1

1 0 1 1

-i 0 1 1

1 0 -i 1

1 0 1 -I

-I 0 -i -i

1 0 -i -i

-I 0 1 -i

-i 0 -I 1

1 1 O" 1

-i 1 0 1

1 -I 0 1

1 1 0 -i

-I -i 0 -I

1 -I 0 -I

-i 1 0 -I

-i -I 0 1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X X

X X X X

X X

X X

X X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X X X

X X X X X

x x x X X

x x X X

X

x X X X

X

x x X x

X X X X

X X X x X

X X

X X X X X

X X

X X X X x

X X X X X

X X X X X

X X X X

X X

X X X X X

X X X X

X X X X X

X X X X X

Table 6-5. Robustness Test Results of the Full-State Feedback

Optimized Design.
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NATURAL FREQUENCY

VARIATION FACTORS

w 2 w3 w4 w5

1 1 1 0

-i 1 1 0

1 -1 1 0

1 1 -1 0

-1 -i -I 0

1 -i -1 0

-I 1 -I 0

-I -1 1 0

0 0 1 1

0 0 1 -1

0 0 -1 -1

0 0 -1 1

0 1 0 1

0 1 0 -1

0 -1 0 -1

0 -1 0 1

0 1 1 0

0 1 -1 0

0 -1 -1 0

0 -1 1 0

1 0 1 0

1 0 -1 0

-1 0 -1 0

-1 0 1 0

1 0 0 1

1 0 0 -1

-1 0 0 -1

-1 0 0 1

1 1 0 0

1 -1 0 0

-1 -1 0 0

-1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X X

X X X X

X X X X X

X X X X

X X X X X

X X X X X

X X

X X

X

X

X

X

x

X X X X

X X X X

X X X X X

X X X X X

X X

X X X X X

X X X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X

X

Table 6-5. (Cont.) Robustness Test Results of the Full-State

Feedback Optimized Design.
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NATURAL FREQUENCY

VARIATION FACTORS

w2 w 3 w4 w5

1

-i

1

1

1

1

1

1

-i

-i

-i

-i

1

-1

-I

-i

0

0

0

0

0

0

0

0

1

-i

1

1

-I

1

-1

-1

1

-i 1

1 -1

1 1

-1 -1

1 -1

-1 1

-1 -1

1 1 1

1 1 1

-1 1 1

1 -I 1

1 1 _I

1 -i -I

-I 1 -I

-i -I 1

-i 1 1

1 -1 1

1 1 -1

-1 -1 -1

-1 -1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1 1 1

-1 1 1

1 -1 1

1 1 -1

-1 -1 -1

1 -1 -1

-1 1 -1

-1 -1 1

0 1 1

0 1 1

0 -1 1

0 1 -1

0 -1 -1

0 -1 -1

0 1 -1

0 -1 1

1 0 1

0 1

0 1

0 -1

0 -1

0 -1

0 -1

0 1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X

X X X X

X X X X

X X X X

X X x X

x X X x

x X X x

x X X x

X X X x

X X X x

X X x X

X X x x

X

X

x X

X

x

X

X X

X X

X

x

X

X

X

X

X

X

x

x

X

X

x

X

X

X

X

X

X

X X

X X X x

X X X X

X X X X

X X x X

X X

X

X X

X X

X

x

X X

X

x

X X

X x

X x

X x

X X

X X

X X

X X

X X

X

X

X X X

X

Table 6-6.

Compensator.

Robustness Test Results of the Initial 5-Mode
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NATURAL FREQUENCY

VARIATION FACTORS

w2 w 3 w4 w 5

1 I 1 0

-i 1 1 0

1 -I 1 0

1 1 -I 0

-! -! -i 0

1 -i -I 0

-I 1 -I 0

-i -i 1 0

0 0 1 1

0 0 1 -i

0 0 -i -i

0 0 -I 1

0 1 0 1

0 i 0 -I

0 -i 0 -i

0 -i 0 1

0 1 1 0

0 1 -I 0

0 -i -i 0

0 -1 1 0

1 0 1 0

1 0 -1 0

-1 0 -1 0

-1 0 1 0

1 0 0 1

1 0 0 -1

-1 0 0 -1

-1 0 0 1

1 1 0 0

1 -1 0 0

-1 -1 0 0

-1 1 0 0

1 0 0" 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X

X X X

X X X X X X

X

X x X X X X

x X x X X X X

X X X

X X X x X

X X x X

X X x X

X X X X

X X x x

X X x x

X X X X

X

x

X

x x

• X X

X

X

X X X

X X

X X

X X

x

x

X

X

X X

X

X

X

X X X X

x X

x X

Table 6-6. (Cont.) Robustness Test Results of the Initial 5-Mode

Compensator.
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I

I
I
I
I

I

I
I

I
I

I

I
I

NATURAL FREQUENCY

VARIATION FACTORS

u 2 u3 w4 w 5

1

-i

1

1

1

1

1

-i

-I

-i

-i

1

-i

-i

-i

0

0

0

0

0

0

0

0

1

-I

1

1

-i

1

-i

-I

1

-i

1

1

-I

1

-i

-i

1 1 1

1 1 1

-i 1 1

1 -i 1

1 1 -i

i -i -I

-I 1 -i

-i -I 1

-i 1 1

1 -I 1

1 1 -i

-I -I -i

-i -i -i

1 -i -I

-I 1 -I

-I -I 1

1 1 1

-I 1 1

1 -i 1

1 1 -I

-i -i -i

1 -i -i

-i 1 -i

-I -I 1

0 1 1

0 1 1

0 -I 1

0 1 -i

0 -I -i

0 -I -i

0 1 -i

0 -i 1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X

X

X

1 0 1

1 0 1

-1 0 1

1 0 -1

-1 0 -1

-1 0 -1

1 0 -1

-1 0 1

x

x

X

X X

X x

X X

x X

Table 6-7.

Compensator.

Robustness Test Results of the Optimized 5-Mode
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NATURAL FREQUENCY

VARIATION FACTORS

w 2 w 3 w 4 w5

1 1 1 0

-i 1 1 0

1 -i 1 0

1 1 -i 0

-! -! -! 0

1 -i -I 0

-I 1 -I 0

-i -i 1 0

0 0 1 1

0 0 1 -i

0 0 -i -I

0 0 -I 1

0 1 0 1

0 1 0 -i

0 -I 0 -I

0 -I 0 1

0 1 1 0

0 ! -I 0

0 -I -i 0

0 -i 1 0

I 0 1 0

1 0 -I 0

-i 0 -i 0

-i 0 1 0

1 0 0 1

1 0 0 -i

-i 0 0 -i

-i 0 0 1

1 1 0 0

1 -i 0 0

-i -I 0 0

-I 1 0 0

1 0 O" 0

0 1 0 0

0 0 1 0

0 0 0 1

-i 0 0 0

0 -i 0 0

0 0 -i 0

0 0 0 -I

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

x x

x X

X

x X

X X

X X

Table 6-7. (Cont.) Robustness Test Results of the Optimized 5-Mode

Comp ens ator.
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I
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I

DESIGN

initial full-state feedback

optimized full-state feedback

initial closed-loop (compensator)

optimized closed-loop (compensator)

NUMBER OF UNSTABLE

VARIATIONS FROM 720

165

223

226

27

Table 6-8. Number of Variations which Result in Unstable Designs.

a time) to the eleven-mode plant, and performed the robustness test by

varying first four natural frequencies of the plant by a constant

percentage times a variation factor (I,0 or -i for each natural

frequency), while maintaining the original damping of the plant and

the original natural frequencies in the compensator. For the initial

compensator, the results of the robustness test are identical to those

of Table 6-6. For the optimized compensator, the results of the

robustness test are identical to the results in Table 6-7. These

robustness tests indicate that for this example the robustness of the

initial and the optimized compensators are insensitive to the

unmodeled modes, which is partially due to well separated natural

frequencies of the eleven-mode plant.

In comparing the performance of the initial and the optimized

compensators, we use the performance index discribed in Section 3.1,

repeated here for convenience

J = $ [xT(t)QcX(t)+uT(t)RcU(t)]dt. (6.33)
P 0
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I
From (6.33), we see that

I j=j+j ,p x u

where

!
_ x T

Jx- 1'0 [ (t)QcX(t)]dt'

I Ju = fO [uT(t)Rc u(t) ]dr.

(6.34)

(6.35)

I
(6.36)

J is the quantity we wish to control and J is the control effort.
x u

I

I

In general, smaller values of J for a given initial condition
x

indicate that the initial state converges faster to the origin (zero

state). However, as indicated by Tables 6-10 and 6-12 and Figure 6-3,

I
I
I

this is not always the case. Tables 6-9 through 6-12 show the

performances of the initial and the optimized compensators for various

initial conditions. For the initial compensator, Table 6-9 shows the

performance of the initial five-mode compensator connected to the

five-mode plant, and Table 6-10 shows the performance of the initial

I
five-mode compensator connected to the eleven-mode plant. (In

evaluating the performance of a five mode compensator connected to an

I

I

eleven-mode plant, the terms in matrix Qc corresponding to the

additional plant modes are zero.) Note that Tables 6-9 and 6-10

indicate that the performance of the initial compensator is

I

I
I

insensitive to the unmodeled modes.

For the optimized compensator, Table 6-11 shows the performance

of the optimized five-mode compensator connected to the five-mode

plant, and Table 6-12 shows the performance of the optimized five-mode

I
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I
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I
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I
I
I

I
I
i
i

I

compensator connected to the eleven-mode plant. These tables indicate

that the performance of the optimized compensator is insensitive to

the unmodeled modes.

Figures (6-3) - (6-8) show the response of the rigid-body angle

8(t) and the control u(t) for various initial conditions. (All plots

have been scaled such that 8(0)=1.) In each Figure, the dashed lines

represent the time histories corresponding to the initial compensator

connected to the eleven-mode plant, and the solid lines represent the

time histories corresponding to the optimized compensator connected to

the eleven-mode plant. (For the initial and the optimized designs,

the time histories of the 5-mode plants connected to the 5-mode

compensators coincide with thoes shown in Figures 6-3 through 6-9.)

For the initial design, Figure 6-3 shows that the settling time of the

rigid-body angle is 10.05 seconds, which is 3.45 times the period of

the first flexible open-loop mode (T2=2.91 seconds). For the

optimized design, Figure 6-3 shows that the settling time of the

rigid-body angle is 6.80 seconds, which is 2.34 times the period of

the first flexible open-loop mode (T2=2.91 seconds). (The settling

time is the time required for the response curve to reach and stay

within +_5% of its initial value.) Note that the overshoot present in

the rigid-body angle response is partially due to the tip mass m 1

which is as heavy as the initial beam; i.e. m I = 1 slug. Although we

have improved the robustness of the initial design by factor of three,

Tables 6-10 and 6-12 indicate and Figuers 6-3 through 6-8 confirm that
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there is no significant difference in the performances (value of Jx)

of the optimized and the initial compensators.
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INITIAL

CONDITION

OF THE

STRUCTURE

Ist mode

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

J
P

2.6937

COST X 10 -8

J
x

2.3111

ist mode

2nd mode

3rd mode

4th mode

5th mode

0

0

0

0

0

4.8392

0.0702

0.0702

0.4195

4.2116

3.5551

0.0302

0.0275

0.2848

3.5246

J
u

0.3826

1.2841

0.0400

0.0427

0.1347

0.6870

Table 6-9. Performance of the 5-Hode Initial Compensator Connected

to the 5-Mode Plant for Various Initial Conditions.

I
I
I
I

i

I

I
i
I

INITIAL

CONDITION

OF THE

STRUCTURE

ist mode

ist mode

2nd mode

3rd mode

4th mode

5th mode

Table 6-10.

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

0

0

0

0

0

J
P

2.6937

4.8392

0.0699

0.0700

0.4193

4.2121

COST x 10 -8

J
x

2.3113

3.5555

0.0302

0.0275

0.2849

3.5275

J
u

0.3824

1.2837

0.0397

0.0425

0.1344

0.6846

RESPONSE

OF THE

RIGID-BODY

ANGLE

Fig. 6-3

Fig. 6-4

Fig. 6-5

Fig. 6-6

Fig. 6-7

Fig. 6-8

Performance of the 5-Mode Initial Compensator Connected
to the ll-Mode Plant for Various Initial Conditions.
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INITIAL

CONDITION

OF THE

STRUCTURE

Ist mode

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

J
P

2.7757

COST x 10 -8

J
X

2.5227

J
u

Ist mode

2nd mode

3rd mode

4th mode

5th mode

4.4691

0.2242

0.2055

0.6307

6.2618

3.4190

0.0310

0.0219

0.2005

2.3757

0.2530

1.0501

0. 1932

0. 1836

0.4302

3.8861

Table 6-11. Performance of the 5-Mode Optimized Compensator
Connected to the 5-Node Plant for Various Initial Conditions.

i
i
i
1
|
t
i
I
I

INITIAL

CONDITION

OF THE

STRUCTURE

INITIAL

CONDITION

OF THE

ESTI_MTOR

C0ST X 10 -8

J
P

J
X

J
U

Ist mode

ist mode

2nd mode

3rd mode

4th mode

5th mode

Table 6-12.

ist mode

0

0

0

0

0

Performance

2.7758

4.4690

0.2180

0.2002

0.6221

6.2174

of the

2.5229

3.4193

0.0309

0.0218

0.2002

2.4009

5-Mode

0 2529

1 0497

0 1871

0 1784

0 4219

3 8165

RESPONSE

OF THE

RIGID-BODY

ANGLE

Fig. 6-3

Fig. 6-4

Fig. 6-5

Fig. 6-6

Fig. 6-7

Fig. 6-8

Connected to the ll-Mode Plant for Various Initial Conditions.
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Chapter VII

SENSITIVITY AND STRUCTURAL WEIGHT OPTIMIZATION

7.1 First-Order Sensitivity and Structural Weight Optimization

Problem Statement

Find the elements of h (structural design variables), and the

gain matrices F and G (control design variables) that minimize (7. i),

which includes the structural weight and the first-order sensitivities

of the closed-loop eigenvalues with respect to plant uncertainties

(natural frequencies), subject to eigenvalue constraints and partial

side constraints on design variables; i.e. , choose F, G and h to m[nhnizc

J(F,G,h)=[Jc(F,G,h)/Jc(F=,G=,h,) ]+a[W(h)/W(h,) ],

subject to

Re(k_) _ <_ max Re(k c ) < Re(_ )u
_. . C.

1 i z z

Re(X )£ <_ max Re(X e ) < Re(_ )u
e. . e.

z i z z

rain t Im(_c!l -> Im(),c! £
i 1 z

min IIm(Xe) l > £m(X_) £
i z i

h_._h. __h_.
1 1 1

In (7. I)-(7.6),

i = I, ..., 2n,

i = i, ..., 2n,

i = I, ..., 2n,

i = i, ..., 2n,

(7.1)

(7.2)

(7.3)

(7.4)

(7 .s)

i = i, ..., n s. (7.6)
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and

4n z ½

Jc(F,G,h) ={ Z [_i21Re(Vkc_!lw] } ,
i=l i

(7.7)

h = [h i, .-., hn ],
S

(7.8)

(7.9)

2 2

T= [ _! "'" Wn]'
(7.i0)

2

Bi= Wi,
(7.ii)

F = rX2n control gain matrix,

r = number of actuators,

n = number of structural modes used in compensator design,

G = 2nXm estimator gain matrix,

m = number of sensors (measurement),

Jc(F,G,h) = control objective function,

W(h) = structural weight,

h. = ith structural design variable (cross-sectional height).
I

a = structural weight weighting factor,

k ffiith
C,

1

controller eigenvalue,

e°

1

estimator eigenvalue,

kc£_ ith closed-loop eigenvalue,
i

• ith= uncertain plant parameter (natural frequencies),
l
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_. = ith scalar weighting factor,m

n = number of structural design variables,
S

Re(.) = real part of a complex number,

Ira(.) = imaginary part of a complex number,

max(.) = maximum value,

rain( •) = minimum --_v_e,1-"

I'I = absolute value,

(.)£ = lower bound,

(.)u = upper bound,

(.) 0 = nominal value.

In problems with a rigid-body mode, w I is zero and we use only the

sensitivities with respect to the nonzero frequencies in (7.1), so

2

that _- and w I are not included in (7.9) and (7.10).
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7.2 Example

In the following sections, we consider the structural model

described in Sec. 6.3 with the exception that the heights of the cross

sections at the beam nodes are also design variables. Here, the

initial structural design variables were selected so that the initial

structure was identical to that of Sec. 6.3, (uniform beam).

To illustrate the relationship between structural weight

optimizaton and performance, we design our compensators based on two

sets of structural modes. In Section 7.2.1, we control the first

4-modes of the structure with compensators based on four modes, and in

Section 7.2.2, we control the first 5-modes of the structure with

compensators based on five modes. In each of these sections, we

present three optimized designs which demonstrate the trade off

between the control objective function and the structural weight

minimization, and we present numerical results to compare the

robustness of one of the optimized compensator�structure designs with

the robustness of the initial design. Also, we compare the

performance of the optimal and initial designs by computing quadratic

performance indices and time histories for certain initial conditions.
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7.2.1 Four-Mode Compensator Example

We take the state vector x(t) to represent the first four modal

displacements and velocities of the ten-element model, so that the

matrix A is

2 2 (7.12)
A(_) = ._ -CoCo

where _ is a 4X4 diagonal matrix containing the natural frequencies

(uncertain parameters) of the model, Co is the damping coefficient and

n0 is a 4X4 diagonal matrix containing the nominal natural frequencies

of the model. The first element of _ is zero, corresponding to the

rigid-body mode. When we refer to the natural frequencies of the

plant, we will mean the three nonzero elements of _ only. We assume

that the matrices B and C do not depend on uncertain parameters. (See

Eqn. 5.5).

For our four-mode model of the initial structure, based on the

nominal values of the plant natural frequencies, we designed an

initial linear-quadratic-gaussian (LQG) compensators (see Sections 3.3

and 5.3) with

a = 0.0, (7.13)
c

R = 1.0, (7.14)
C

Qc =

8
5 I 0

i0 I00 l
I

I

0 _ 0
I

XI000, (7.15)

= 0.3,
e

(7.16)
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[i o1Re 0 1

(7.17)

I. 0 I 0

Q_ .........._..........-I_iooo.
|

0 I 1 1 J

(7.18)

control objective

To demonstrate the trade off between the

Jc(F,G,h) and the structural weight W(h) minimization, consider three

optimization problems where the objective functions are constructed

with a = 2, 3 and 5 in 47.1). Since we use the ten element model of

the structure, we have ii structural design variables (the heights of

the cross sections at the beam nodes). Also, we have the iX8 control

gain matrix F and the 8X2 estimator gain matrix G, so that there are

24 control design variables. Therefore, we have a total of 11+24 = 35

design variables• The scalar weighting factors and lower bounds and

upper bounds in (7.1)-(7.6) are

Re()_c)U_ 0.90xRe[Xc!F o,ho)]
• l
J.

Re(ke)u= -0.40
%

i = I, ..., 2n,
47.19)

i = i, ..., 2n,
(7.20)

i = i, ..-, 2n,
(7.21)

i = I, ..., 2n,
(7.22)

i = i, ..., 4n, (7.23)

im(_e)£= 0.20
i

i [ I .. 1
1

1

Iii

1
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h_=0.2s i 1, (7.24)
i _ "''' ns'

h_ = 3.0 i = i, ..., n . (7.25)
1 S

Note that (7.19) indicates that the magnitude of the real part of the

controller eigenvalues can decrease by 10% only.

Each of the optimized designs were obtained by using the ADS

optimizer (Ref. V2), where the sequential unconstrained minimization

technique (SUMT) using the exterior penalty function method, and

Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for

unconstrained minimization of pseudo-objective function (created by

the exterior penalty function method) were selected, see [VI]. Also,

the 35 design variables were scaled by the ADS program, and finite

difference gradients were used in the optimization problems. Each of

the three optimization problems converges in i SUMT iteration which

includes fewer than 45 unconstrained minimization (BFGS) iterations.

The constraint on the real part of the controller eigenvalues (7.19)

and the side constraint corresponding to the height of the cross-

section at the last beam node (tip end) are active for all three

optimized designs. Table 7-1 shows the numerical values of the

control objective functions and the structural weights. In general,

larger values of a result in more structural weight and less control

objective function reduction. However, there are some exceptions due

to the complexity of the numerical optimization and nonlinearity of

the objective function, as indicated by Case B of Table 7-1. Figure

7-1 shows the initial and the three optimized substructures (beams).
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CASE

A

B

C

INITIAL DESIGN

W

1.000

1.000

1.000

J J
C

12.42 3.000

12.42 4.000

12.42 6.000

OPTIMIZED DESIGN

W

0.585

0.601

0.540

J
C

1.274

1.016

1.824

J

1.273

1.884

2.845

ITERATION

HISTORY

FIGURE

Table 7-1. Control Objective and Structural Weigth of the Initial

and Three Optimized Designs with 4-Mode Compensators.

I
I
I

I
I
I
i

INITIAL BEAM

OPTIMIZED BEAM

i- .... m- .... r .... r .... T .... T .... T .... 3" .... I ..... 1 .... "I

I I _ I I I I I I I I

l I I -'_'_-_ ' I I I I I I

I I I I I I I I_I I

I I I I I I I I , I

I [ I I I I I I I I I I

(A)

_i ' I I I I I I I

I| I I I I I

I I I I I I i I

I I I I I I I I 7
L._I I -- I I -- I I I I I

(B}

r .... r .... r .... T .... T .... _ .... I .... "I....
I I I I I I I I I

I _ ! I I I I I I I

I I I I ! I I_ I

I I I I I I I I 7

I I _ I I I I t _ I I

(C)

I
I
I
I

Figure 7-I. The Initial and Three Optimized substructures (Beams).

(A) = = 2, (B) a = 3, (C) ¢ = 5. (4-mode compensators.)
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The initial substructure is drawn in dashed line and an optimized

substructure is drawn in solid line. (Only the portion of a beam over

the center-line is shown.)

To see the effect of first-order closed-loop eigenvalue

sensitivity and structural weight optimization on robustness, consider

for example Case C (a=5) of the three optimized designs. For this

case, the optimization converges in 1 SUMT iteration which includes 33

unconstrained minimization (BFGS) iterations. Figure (7-2) shows the

unconstrained minimization (BFGS) iteration history of the objective

function where J(F,G,h) (normalized with respect to it initia value

6.0) is reduced by 53_. Figure (7-3) shows the unconstrained

minimization (BFGS) iteration histories of the control objective

function and the structural weight, where J (F,G,h) (normalized with
c

respect to it initia value 12.42) is reduced by 85% and W(h)

(normalized with respect to it initia value 1.0) is reduced by 46%

Table 7-2 lists the natural frequencies and the structural design

variables of the initial and the optimized structures, Table 7-3 lists

the control design variables of the initial and the optimized

compensators. Figure 7-4 shows first three flexible mode-shapes of

the initial and the optimized structures. In this figure, nodes of

the initial structure are marked with squares and nodes of the

optimized structure are marked with circles. Note that Fig. 7-2 also

shows the increased flexibility of the optimized design due to its

significant weight reduction. Table 7-4 and Figure 7-5 show the open-

loop and the closed-loop eigenvalues of the initial and the optimized
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designs. In Figure 7-5, the dashed lines connect the eigenvalues of

the initial design and the solid lines connect the eigenvalues of the

optimized design. (Only eigenvalues with positive imaginary parts are

plotted.)

Our measure of robustness for a compensator is how much the plant

natural frequencies can vary, from their nominal values, before the

closed-loop system becomes unstable; i.e., before some eigenvalue of

Ac_ has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant

by a constant percentage times a variation factor (i,0 or -i for each

natural frequency), while maintaining the original damping of the

plant and the original natural frequencies in the compensator. Tables

7-5 and 7-6 present the robustness test results of the initial and the

optimized closed-loop designs. In each one of the robustness tables,

each row represents nine closed-loop designs where the n3tura!

frequencies of the plant were perturbed by a percentage (indecated by

a percentage sign %) times a variation factor for each natural

frequency (listed in the left portion of the tables). In these

tables, " " indicates a stable design and "x" indicates an unstable

design. For the initial plant and compensator, Table 7-5 shows that

the closed-loop design becomes unstable for 20% variations in plant

frequencies. For the optimized plant and compensator, Table 7-6 shows

that the closed-loop design becomes unstable for 60% variations in

plant frequencies. Note that we have improved the robustness of the

closed-loop system by factor of three and at the same time reduced the
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INITIAL DESIGN

J

0.0

2. 1583

7. 1826

15.568

29.010

47.901

72.399

103.14

141.47

188.23

235.33

h.

J

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

OPTIMIZED DESIGN

3

0.0

1.0938

3.8530

8. 3850

15.295

25. 732

39.379

56.958

78.785

107.67

143.92

h.

J

0.9160

0.6571

0.6746

0.5577

0.5541

0.5550

0.5076

0.4998

0.4862

0.3219

0.2500

Table 7-2 Natural Frequencies and Structural Design Variables of the

Initial and the Optimized Structures. (Connected to 4-mode

compensators.)

weight of the structure by 46%. Note also that the optimized

compensator results in an unstable closed-loop system only when the

variations in plant natural frequencies are such that the first and

the second, or the first and the third natural friquencies cross over.

For each of the above robustness tests, there are 234 variations.

That is

N = [n_ 2 -l]n,, (7.26)
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FIj

89.443

-47.304

-32.620

-59.663

180.96

-24.166

-12.218

-15.399

INITIAL DESIGN

Gj 1

247.57

-0.0367

-0.0192

Gj2

0.8999

9.4221

-0.9078

OPTIMIZED DESIGN

Flj

51.652

-30.796

-61.482

Gjl

248.21

-0.1230

0.2556

G j2

1.5785

8.5970

-1.0041

-0.0043

163.33

-0.0802

-0.3183

-0.3109

-0.6771

0.5941

28.381

34.970

32.302

-137.45

188.67

-23.670

-19.625

-15.326

0.2074

163.11

-0.1944

-0.2851

-0.3317

-2.2364

1.5511

28.364

35.205

32.482

Table 7-3. Controller and Observer Gains of the Initial and the

Optimized 4-Mode Compensators.

where

N = 234 is the total number of variations,

n, = 3 is the number of variation factors (I,0 or -I),

n2 = 3 is the number of uncertain parameters,

n, = 9 is the number of variation percentages (i0%, ..., 90%).

For the initial plant and compensator, 39 variations out of 234 result

in unstable designs and for the optimized plant and compensator, 20

variations out of 234 result in unstable designs.
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[
OPEN-LOOP

EIGENVALUES

0.0

0.0

-0. 0023+i2. 1583

-0. 0258+i7 .1826

-0. 1212+i15.567

a) Initial Design.

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.5417±i0.5582

-0.5726±i2.2294

-0.3940±i7.1932

-0.5008±i15.575

ESTIMATOR

-0.9598±i0.5876

-2.5781±i5.0525

-9.5443±i12.874

-4.1680±i14.585

I
I

I
I

I
I

I
I

I

I

OPEN-LOOP

EIGENVALUES

0.0

0.0

-0.0006±ii.0938

-0. 0074±i3. 8530

-0. 0352±i8. 3850

b) Optimized Design.

Table 7-4. Open-Loop

the Optimized Designs

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.4874±i0.3632

-0.5932±i0.9629

-0.5933±i3.9054

-0.5082±i8.5587

ESTIMATOR

-i.0429±i0.5320

-0.5963±i2.5730

-i.1779±i7.0272

-I0.Ii0±i18.828

and Closed-Loop Eigenvalues of the Initial

of 4-Mode Compensators.
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Figure 7-5. Open-Loop and Closed-Loop Eigenvalues of the Initial and

the Optimized Designs of 4-Mode Compensators.
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NATURAL FREQUENCY

VARIATION FACTORS

w2 w3 w&

1 1 1

-I 1 1

1 -i 1

1 1 -i

-i -I 1

-i 1 -i

1 -I -1

-i -I -i

0 1 1

0 1 -i

0 -I -i

0 -i 1

1 0 1

1 0 -i

-i 0 -i

-i 0 1

1 1 0

1 -i 0

-i -I 0

-i 1 0

1 0 0

0 1 0

0 0 1

-I 0 0

0 -i 0

0 0 -I

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X

x x x

X X X

X X X

X X X

X X X

x X X

X X X

X X

X X

x x

X x X

X X

X X

X X

Table 7-5. Robustness Test Results of the Initial 4-Mode Plant and

Compensator.

In investigating robustness with respect to unmodeled modes, we

connected the initial four-mode compensator to the initial eleven-mode

plant and the optimized four-mode compensator to the optimized eleven-

mode plant, and performed the robustness test by varying first three

natural frequencies of the plants by a constant percentage times a

variation factor (I,0 or -i for each natural frequency), while
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NATURAL FREQUENCY

VARIATION FACTORS

w2 w B w4

i 1 I

-i 1 I

1 -i i

1 I -i

-I -i 1

-i i -I

1 -I -i

-I -I -i

0 1 1

0 1 -I

0 -1 -I

0 -1 1

1 0 1

1 0 -1

-1 0 -1

-i 0 1

1 1 0

1 -1 0

-1 -1 0

-1 1 0

1 0 0

0 1 0

0 0 1

-1 0 0

0 -1 0

0 0 -1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X

X

x X X X

X

X X

x x

X x x X

X X

Tabie 7-6. Robustness Test Results of the Optimized 4-Mode Plant and

Compensator.

maintaining the original damping of each plant and the original

natural frequencies in each compensator. For the initial plant and

compensator, the results of the robustness test are identical to those

of Table 7-5. For the optimized plant and compensator, the results of

the robustness test are identical to the results in Table 7-6. These

robustness tests indicate that for this example the robustness of the
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initial and the optimized designs are insensitive to the unmodeled

modes, which is partially due to well separated natural frequencies of

the eleven-mode plant.

In comparing the performance of the initial and the optimized

compensators, we use the performance index discribed in Section 3.1,

repeated here for convenience

= [xT(t)QcX(t)+uT(t)RcuJp ] (t)]dt. (7.27)
0

From (7.27), we see that

J = J + J , (7.28)
p x u

where

Jx = I 0 [xT(t)QcX(t)]dt, (7.29)

" [uT(t)RcU(tJu = I 0 ) ]at. (7.30)

J is the quantity we wish to control and J is the control effort.
x u

In general, smaller values of J for a given initial condition
x

indicate that the initial state converges faster to the origin (zero

state). Tables 7-7 through 7-10 show the performances of the initial

and the optimized designs for various initial conditions. For the

initial plant And compensator, Table 7-7 shows the performance of the

four-mode compensator connected to the four-mode plant, and Table 7-8

shows the performance of the four-mode compensator connected to the

eleven-mode plant. (In evaluating the performance of a four-mode

compensator connected to an eleven-mode plant, the terms in matrix Qc
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corresponding to the additional plant modes are zero.) Note that

Tables 7-7 and 7-8 indicate that the performance of the initial

compensator is insensitive to the unmodeled modes of the initial

plant.

For the optimized plant and compensator, Table 7-9 shows the

performance of the four-mode compensator connected to the four-mode

plant, and Table 7-10 shows the performance of the four-mode

compensator connected to the eleven-mode plant. These tables indicate

that the performance of the optimized compensator is insensitive to

the unmodeled modes of the optimized plant.

Figures (7-6) - (7-10) show the response of the rigid-body angle

8(t) and the control u(t) for various initial conditions. (All plots

have been scaled so that 8(0)=1.) In each Figure, the dashed lines

represent the time histories corresponding to the initial compensator

connected to the initial eleven-mode plant, and the solid lines

represent the time histories corresponding to the optimized

compensator connected to the optimized eleven-mode plant. (For the

initial and the optimized designs, the response curves of the four-

mode plants connected to the four-mode compensators coincide with

those shown in Figures 7-6 through 7-10.) For the initial design,

Figure 7-6 shows that the settling time of the rigid-body angle is

10.05 seconds, which is 3.45 times the period of the first flexible

open-loop mode (T2=2.91 seconds). For the optimized design, Figure

7-6 shows that the settling time of the rigid-body angle is 9.50

seconds, which is 1.65 times the period of the first flexible open-
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loop mode (T2=5.74 seconds). (The settling time is the time required

for the response curve to reach and stay within ±5% of its initial

value.) Note that the overshoot present in the rigid-body angle

response is partially due to the tip mass m I which is as heavy as the

initial beam; i.e. m I = 1 slug. Tables 7-8 and 7-10 indicate and

Figuers 7-6 _ ..... _ 7_In _...... 6 ..... confirm _,=_ there is a significant

difference in the performances (value of Jx) of the optimized and the

initial designs. This loss of performance is not entirely due to the

increased robustness of the closed-loop system but it is mainly due to

the significant weight reduction of the structure (46%), and partially

due to the more relaxed constraint on the controller eigenvalues,

(7.2) and (7.19).
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INITIAL

CONDITION

OF THE

STRUCTURE

1st mode

lstmode

2nd mode

3rd mode

4th mode

INITIAL

CONDITION

OF THE

ESTIMATOR

1st mode

0

0

0

0

J
P

2.6922

4.8357

0.0601

0.0630

0.4174

COST X 10 -8

J
X

2.3086

3.5515

0.0278

0.0238

0.2495

J
u

0.3836

1.2842

0.0323

0.0392

0.1679

Table 7-7. Performance of the 4-Mode Initial Compensator Connected

to the 4-Mode Initial Plant for Various Initial Conditions.

!

i

I

I

i

I

m

I

i

INITIAL

CONDITION

OF THE

STRUCTURE

ist mode

Ist mode

2nd mode

3rd mode

4th mode

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

0

0

0

0

J
P

2.6923

4.8333

0.0598

0.0627

0.4170

COST X 10 -8

J
x

2.3101

3.5527

0.0279

0.0239

0.2507

J
U

0.3822

1.2806

0.0319

0.0388

0.1663

RESPONSE

OF THE

RIGID-BODY

ANGLE

Fig. 7-6

Fig. 7-7

Fig. 7-8

Fig. 7-9

Fig. 7-10

Table 7-8. Performance of the 4-Mode Initial Compensator Connected

to the ll-Hode Initial Plant for Various Initial Conditions.
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INITIAL

CONDITION

OF THE

STRUCTURE

Ist mode

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

ist mode

2nd mode

3rd mode

4th mode

COST X 10 -8

J
P

3.6373

7.7451

0.0575

0.0561

0.3533

J
X

3.5626

7.3773

0.0337

0.0259

0.2504

J
U

0.0747

0.3678

0.0238

0.0302

0.1029

Table 7-9. Performance of the 4-Mode Optimized Compensator Connected

to the 4-Mode Optimized Plant for Various Initial Conditions.

INITIAL

CONDITION

OF THE

STRUCTURE

Ist mode

Ist mode

2nd mode

3rd mode

4th mode

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

0

0

0

0

J
P

3.6391

7.7373

0.0576

O. 0562

0.3590

COST x 10 -8

J
X

3.5648

7.3709

0.0338

0.0260

0.2566

J
u

0.0743

0.3664

0.0238

0.0302

0.1024

RESPONSE

OF THE

RIGID-BODY

ANGLE

Fig. 7-6

Fig. 7-7

Fig. 7-8

Fig. 7-9

Fig. 7-10

Table 7-10.

Connected to

Conditions.

Performance

the ll-Hode

of the 4-Mode

Optimized Plant
Optimized Compensator
for Various Initial
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7.2.2 Five-Mode Compensator Example

To demonstrate the trade off between the control objective

J (F,S,h) and the structural weight W(h) minimization, consider the
c

initial design of Sec. 6.3 for three optimization problems where the

objective functions are constructed with a = 2, 4 and 6 in (7.1).

Since we use the ten element model of the structure, we have ii

structural design variables (the heights of the cross sections at the

beam nodes). Also, we have the IX10 control gain matrix F and the

10X2 estimator gain matrix G, so that there are 30 control design

variables• Therefore, we have a total of 11+30 = 41 design variables•

The scalar weighting factors and lower bounds and upper bounds in

(7.1)-(7.6) are

Re(X_) u= 0.90xRe[X (F0,h0)] i = i, ..., 2n, (7.31)

l l

Re(le)U= -0.A0 i = i, ..., 2n, [7•32)
1

Im(X) t= 0•20 i = i, ..., 2n, (7.33)

l

Im(X ) _= 0.20 i = I, ..., 2n, (7•34)

ei

1 1

_i = max [iRe(Xc£). I , IIm(X-")l]_.x..
3. "t

i = i, ..•, 4n,

i = i, ..., ns_

i= i, ..•, n
s

(7.35)

(7.36)

(7.37)
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Note that (7.31) indicates that the magnitude of the real part of the

controller eigenvalues can decrease by 10% only.

Each of the optimized designs were obtained by using the ADS

optimizer (Ref. V2), where the sequential unconstrained minimization

technique (SUMT) using the exterior penalty function method, and

Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for

unconstrained minimization of pseudo-objective function (created by

the exterior penalty function method) were selected, see [Vl]. Also,

the 41 design variables were scaled by the ADS program, and finite

difference gradients were used in the optimization problems. Each of

the three optimization problems converges in 1 SUMT iteration which

includes fewer than 35 unconstrained minimization (BFGS) iterations.

The constraint on the real part of the controller eigenvalues (7.31)

and the side constraint corresponding to the height of the cross-

section at the last beam node (tip end) are active for all three

optimized designs. Table 7-11 shows the numerical values of the

control objective functions and the structural weights. In general,

larger values of a result in more structural weight and less control

objective function reduction. However, there are some exceptions due

to the complexity of the numerical optimization and nonlinearity of

the objective function. Figure 7-11 shows the initial and the three

optimized substructures (beams). The initial substructure is drawn in

dashed line and an optimized substructure is drawn in solid line.

(Only the portion of a beam over the center-line is shown.)
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CASE

INITIAL DESIGN

W

1.000

1.000

1.000

J J
C

10.60 3.000

10.60 5.000

10.60 7.000

OPTIMIZED DESIGN

W

O. 664

0.658

0.651

J
C

3.418

6.750

7.722

J

1.651

3.267

4. 635

Table 7-11. Control Objective and Structural Weigth of

and Three Optimized Designs with 5-Mode Compensators.

ITERATION

HISTORY

FIGURE

7"12,7-13

the Initial

I

I
I

I
I

I
I

INITIRL 8EQM

-- OPTIMIZED BEQM
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(C)

I
I

I
I

Figure 7-11. The Initial and Three Optimized substructures (Beams).

(A) a = 2, (B) a = 4, (C) a = 6. (5-mode compensators.)
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To see the effect of first-order closed-loop eigenvalue

sensitivity and structural weight optimization on robustness, consider

for example Case C (a=6) of the three optimized designs. For this

case, the optimization converges in 1SUHT iteration which includes 27

unconstrained minimization (BFGS) iterations. Figure (7-12) shows the

unconstrained minimization (BFGS) iteration history of the objective

function where J(F,G,h) (normalized with respect to it initia value

7.0) is reduced by 34_. Figure (7-13) shows the unconstrained

minimization (BFGS) iteration histories of the control objective

function and the structural weight, where J (F,G,h) (normalized with
c

respect to it initia value 10.60) is reduced by 27% and W(h)

(normalized with respect to it initia value 1.0) is reduced by 35_

Table 7-12 lists the natural frequencies and the structural design

variables of the initial and the optimized structures, Table 7-13

lists the control design variables of the initial and the optimized

compensators. Figure 7-14 shows the first three flexible mode-shapes

of the initial and the optimized structures. In this figure, nodes of

the initial structure are marked with squares and nodes of the

optimized structure are marked with circles. Note that Fig. 7-12 also

shows the increased flexibility of the optimized design due to its

significant weight reduction. Table 7-1& and Figure 7-15 show the

open-loop and the closed-loop eigenvalues of the initial and the

optimized designs. In Figure 7-15, the dashed lines connect the

eigenvalues of the initial design and the solid lines connect the

eigenvalues of the optimized design. (Only eigenvalues with positive
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imaginary parts are plotted.)

Our measure of robustness for a compensator is how much the plant

natural frequencies can vary, from their nominal values, before the

closed-loop system becomes unstable; i.e., before some eigenvalue of

Ac£ has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant

by a constant percentage times a variation factor (i,0 or -i for each

natural frequency), while maintaining the original damping of the

plant and the original natural frequencies in the compensator. Tables

6-6 and 7-15 present the robustness test results of the initial and

the optimized closed-loop designs. In each of the robustness tables,

each row represents nine closed-loop designs where the natural

frequencies of the plant were perturbed by a percentage (indecated by

a percentage sign %) times a variation factor for each natural

frequency (listed in the left portion of the tables). In these

tables, " " indicates a stable design and "x" indicates an unstable

design. For the initial plant and compensator, Table 6-6 shows that

the closed-loop design becomes unstable for 20% variations in plant

frequencies. For the optimized plant and compensator, Table 7-15

shows that the closed-loop design becomes unstable for 60% variations

in plant frequencies. Note that we have improved the robustness of

the closed-loop system by factor of three and at the same time reduced

the weight of the structure by 35%. Note also that the optimized

compensator results in an unstable closed-loop system only when the

variations in plant natural frequencies are such that the first and
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INITIAL DESIGN

J

0.0

2. 1583

7. 1826

15.568

29.010

47.901

72.399

103.14

141.47

188.23

235.33

h.

J

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

OPTIMIZED DESIGN

J

0.0

1.3080

4.7698

10.739

20.427

32.388

48.014

69.172

95.028

132.00

166.16

h.

J

1.0910

0.8750

0.5979

0.6823

0.6038

0.5889

0.6946

0.6335

0.5796

0.5842

0.2500

Table 7-12 Natural Frequencies and Structural Design Variables of the

Initial and the Optimized Structures. (5-mode compensators.)

the second, or the first and the third natural friquencies cross over.

For each of the above robustness tests, there are 720 variations (see

Eqn. 6.32). For the initial plant and compensator, 226 variations out

of 720 result in unstable designs and for the optimized plant and

compensator, 59 variations out of 720 result in unstable designs.

In investigating robustness with respect to unmodeled modes, we

connected the initial five-mode compensator to the initial eleven-mode
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Flj

89.443

-47.212

-32.144

INITIAL DESIGN

Gjl

247.57

-0.0360

-0.0251

Gj2

0.7453

9.9207

-0.3027

OPTIMIZED DESIGN

FIj

86.638

-22.927

-99.311

Gjl

247.34

-0.0360

-0.0253

Gj2

0.8082

9.8931

-0.3135

-56.023

-90.007

181.06

-24.205

-12.242

-15.444

-17.147

-0.0028

-0.0131

163.33

-0.0593

-0.3045

-0.3024

-1.2148

0.0944

0.7929

0.5014

27.796

35.710

34.285

136.14

-11.910

-316.34

180.42

-23.557

-12.146

-19.401

-26.571

-0.0041

-0.0111

163.22

-0.0542

-0.3023

-0.3005

-1.2141

0. 0265

0. 7235

0.3514

27.792

35.704

34.285

136.14

Table 7-13. Controller and Observer Gains of the Initial and the

Optimized 5-Mode Compensators.

plant and the optimized five-mode compensator to the optimized eleven-

mode plant, and performed the robustness test by varying first three

natural frequencies of the plants by a constant percentage times a

variation factor (I,0 or -i for each natural frequency), while

maintaining the original damping of each plant and the original

natural frequencies in each compensator. For the initial plant and

compensator, the results of the robustness test are identical to those

of Table 6-6. For the optimized plant and compensator, the results of
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a)

OPEN-LOOP

E IGENVALUES

0.0

0.0

-0. 0023+i2. 1583

-0. 0258+i7. 1826

-0. 1212+i15.567

-0. 4208+i29. 007

Initial Design.

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.5415+i0. 5580

-0.5721±i2.2293

-0.3937±i7.1932

-0.5001±i15.575

-0.7097±i29.012

ESTIMATOR

-0.9598±i0.5876

-2.5932±i5.0472

-8.0933±i12.011

-3.9348±i15.290

-8.5054±i29.711

b)

OPEN-LOOP

EIGENVALUES

0.0

0.0

-0.0009±ii. 3080

-0.0114±i4. 7698

-0. 0577±ii0. 739

-0. 2086±i20. 426

Optimized Design.

CLOSED-LOOP EIGENVALUES

CONTROLLER

-0.4874±i0.7234

-0.5269±ii.0556

-0.4824±i5.0990

-0.4638±ii0.642

-0.7197±i20.586

ESTIMATOR

-I.0192±i0.5535

-i.0520±i3.2532

-1.9676±i9.1562

-4.1895±i14.508

-16.985±i20.570

Table 7-14. Open-Loop and Closed-Loop Eigenvalues of the Initial

the Optimized Designs of 5-Mode Compensators.
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NATURAL FREQUENCY

VARIATION FACTORS

w2 w3 w4 w5

1 1 1 1

-I 1 1 1

1 -i 1 1

1 1 -i 1

! ! ! -!

1 1 -i -I

1 -I 1 -I

1 -I -i 1

-i -i 1 1

-i 1 -i 1

-i 1 1 -i

-I -i -I -I

1 -I -I -I

-i 1 -i -i

-i -i 1 -i

-I -I -I 1

0 1 1 1

0 -I 1 1

0 1 -I 1

0 1 1 -I

0 -i -I -i

0 1 -I -i

0 -i 1 -i

0 -I -i 1

1 0 1 1

-i 0 1 1

1 0 -I 1

1 0 1 -i

-i 0 -i -I

1 0 -i -I

-I 0 1 -I

-I 0 -i 1

1 1 O' 1

-I 1 0 1

1 -i 0 1

1 1 0 -I

-i -i 0 -I

1 -i 0 -i

-I 1 0 -i

-i -i 0 1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X x X X

X X X X

X X X X

X X X X

x x

X

X x

X

x x

X x

X X X X

X X X X

Table 7-15.

Compensator.
Robustness Test Results of the Optimized 5-Mode
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NATURAL FREQUENCY

VARIATION FACTORS

w 2 w3 w4 w5

1 1 1 0

-i 1 1 0

1 -I 1 0

1 1 -i 0

-i -I -i 0

1 -i -i 0

-I 1 -I 0

-i -i 1 0

0 0 1 1

0 0 1 -1

0 0 -1 -1

0 0 -1 1

0 1 0 1

0 1 0 -1

0 -I 0 -I

0 -i 0 1

0 1 1 0

0 1 -i 0

0 -i -I 0

0 -i 1 0

1 0 1 0

1 0 -I 0

-1 0 -1 0

-1 0 1 0

1 0 0 1

1 0 0 -1

-1 0 0 -1

-1 0 0 1

1 1 0 0

1 -1 0 0

-1 -1 0 0

-1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

VARIATION PERCENTAGE

10% 20% 30% 40% 50% 60% 70% 80% 90%

X X X X

X X X X

X

x x

X X

x

X x

x x

X X X X

X X

X

Table 7-15. (Cont.) Robustness Test Results of the Optimized 5-Mode

Compensator.
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the robustness test are identical to the results in Table 7-15. These

robustness tests indicate that for this example the robustness of the

initial and the optimized designs are insensitive to the unmodeled

modes, which is partially due to well separated natural frequencies of

the eleven-mode plant.

In comparing the performance of the initial and the optimized

compensators, we use the performance index in (6.33) where

J = J + J • (7.38)
p x u

For the initial plant and compensator, Table 6-9 shows the performance

of the five-mode compensator connected to the five-mode plant, and

Table 6-10 shows the performance of the five-mode compensator

connected to the eleven-mode plant. These tables indicate that the

performance of the initial compensator is insensitive to the unmodeled

modes of the initial plant.

For the optimized plant and compensator, Table 7-16 shows the

performance of the five-mode compensator connected to the five-mode

plant, and Table 7-17 shows the performance of the five-mode

compensator connected to'the eleven-mode plant. These tables indicate

that the performance of the optimized compensator is insensitive to

the unmodeled modes of the optimized plant.

Figures (7-16) - (7-21) show the response of the rigid-body angle

8(t) and the control u(t) for various initial conditions. (All plots

have been scaled such that 8(0)=1.) In each Figure, the dashed lines

represent the time histories corresponding to the initial compensator

connected to the initial eleven-mode plant, and the solid lines
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represent the time histories corresponding to the optimized

compensator connected to the optimized eleven-mode plant. (For the

initial and the optimized designs, the response curves of the five-

mode plants connected to the five-mode compensators coincide with

those shown in Figures 7-16 through 7-21.) For the initial design,

Figure 7-16 shows that the settling time of the rigid-body angle is

10.05 seconds, which is 3.45 times the period of the first flexible

open-loop mode (T2=2.91 seconds). For the optimized design, Figure

7-16 shows that the settling time of the rigid-body angle is 13.15

seconds, which is 2.74 times the period of the first flexible open-

loop mode (T2=4.80 seconds). (The settling time is the time required

for the response curve to reach and stay within ±5% of its initial

value.) Note that the overshoot present in the rigid-body angle

response is partially due to the tip mass m I which is as heavy as the

initial beam; i.e. m I = 1 slug. Tables 6-10 and 7-17 indicate and

Figuers 7-16 through 7-21 confirm that there is a significant

difference in the performances (value of Jx) of the optimized and the

initial designs. This loss of performance is not entirely due to the

increased robustness of the closed-loop system but it is mainly due to

the significant weight reduction of the structure (35%), and partially

due to the more relaxed constraint on the controller eigenvalues,

(7.2) and (7.31). In comparing this optimized compensator�structure

design with Case C of Section 7.2.1, we see that both designs can

tolerate at least 50% variations in their plant natural frequencies.
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Also, due to significantly different performance of the 5-mode

compensators, we obtain less weight reduction here compared to the 46%

structural weight reduction in section 7.2.1
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INITIAL

CONDITION

OF THE

STRUCTURE

ist mode

Ist mode

2nd mode

3rd mode

4th mode

5th mode

INITIAL

CONDITION

OF THE

ESTIMATOR

Ist mode

0

0

0

0

0

Table 7-16.

Connected to

Conditions.

COST x 10 -8

J
P

3.7502

10.6536

0.0938

0.1028

0.5475

4.2898

J
X

J
U

3.4771 0.2731

9.7981 0.8555

0.0363 0.0575

0.0356 0.0672

0.3777 0.1698

3.2714 1.0184

5-Mode Optimized Compensator

Plant for Various Initial

Performance

the 5-Mode

of the

Optimized

INITIAL

CONDITION

OFT HE

STRUCTURE

ist mode

ist mode

2nd mode

3rd mode

4th mode

5th mode

Table 7-17.

Connected to

Conditions.

INITIAL

CONDITION

OF THE

ESTIMATOR

ist mode

J
P

3.7495

COST X

J
x

3.4768

10 .8

J
u

0.2727

0

0

0

0

0

Performance

the

10.6481

0. 0925

0. 1017

0.5453

4.3171

of the

9.7931

0.0363

0.0356

0.3772

3.3106

5-Mode

0.8550

0.0562

0.0661

0.1681

1.0065

Optimized

RESPONSE

OF THE

RIGID-BODY

ANGLE

ll-Mode Optimized Plant for

Fig. 7-16

Fig. 7-17

Fig. 7-18

Fig. 7-19

Fig. 7-20

Fig. 7-21

Compensator

Various Initial
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Chapter VIII

CONCLUSIONS

The numerical results for the example of Chapter K _]!ustrate the

significant effect that the closed-loop eigenvalue sensitivity derived

in Section 5.1 has on robustness with respect to modeling errors. The

results in Section 5.2 suggest and the example confirms that controller

and estimator eigenvalues should be separated for a robust design.

Almost linearly dependent estimator eigenvectors or controller

eigenvectors diminish robustness also.

In the example, we chose to move the estimator eigenvalues to the

left of the controller eigenvalues. While such relative placement

of controller and estimator eigenvalues is used frequently in

compensator design so that the faster decaying estimator error will

make the compensator approximate full-state feedback, we have seen

no mention in the literature of the relationship demonstrated here

between controller�estimator eigenvalue location and robustness. We

have found that, to improve robustness by reducing closed-loop

eigenvalue sensitivity, the eigenvalue separation may be achieved as

well by placing some or all of the controller eigenvalues sufficiently

to the left of nearby estimator eigenvalues or, not surprisingly, by

separating imaginary parts of eigenvalues. This is important in

controlling complex flexible structures, which often have lightly
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damped modes along with heavily damped modes, making it impractical

to place all estimator eigenvalues to the left of all controller

eigenvalues.

For a fixed structure, the numerical results for the example of

Chapter 6 demonstrate that first-order sensitivity optimization of the

closed-loop eigenvalues can significantly increase the robustness of

the initial closed-loop design (LQG). in the example, the robustness

of the optimized design is better than the robustness of the full-state

feedback initial and optimized designs, and the optimized compensator

results in an unstable closed-loop system only when the variations in

natural frequencies are such that the first and the second natural

frequencies cross over. Although we have improved the robustness of

the initial design by a factor of three, there is no significant

difference in the performances of the optimized and the initial

compensators for tne nominal plant parameters.

The numerical results of Sections 7.2.1 and 7.2.2 demonstrate the

effectivness of the first-order sensitivity and structural weight

optimization for simultaneously reducing the structural weight and

increasing the robustness of the initial LQG compensator/structure

designs. For each of these examples, the robustness of the optimized

compensator�structure design is better than the robustness of the

full-state feedback initial and optimized designs, and the optimized

compensator/structure design result in an unstable closed-loop system

only when the variations in the plant natural frequencies are such that

the first and the second, or the first and the third natural frequencies

cross over. As illustrated by these examples, the amount of structural
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weight reduction is a strong function of desired performance. In

addition, the loss of performance in the optimized

compensator/structure designs is not entirely due to the increased

robustness (factor of 3), but it is mainly due to the significant weight

reduction of the structures. To maintain the high-performance of the

initial compensator/structure design, we recommend inclusion of a

quadratic performance measure in the objective function of Chapter 7.
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Appendix A

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS

WITH RESPECT TO A PARAMETER

Here we summarize some standard results involving derivatives of

the eigenvalues and eigenvectors of a matrix with respect to a

parameter. To simplify the discussion while covering almost all

applications that interest us, we assume that all eigenvalues are

simple. We use the following notation:

A = an nXn matrix

_. (j = I,..., n) = an eigenvalue of A
3

x. = an eigenvector corresponding to _.
3 J

yj = a left eigenvector corresponding to _.J

A = the nXn diagonal matrix containing the eigenvalues _.
J

th
X = the nXn matrix whose j column is x. (j = 1 ,..., n)

J

th

Y = the nxn matrix whose j column is yj (j = 1 ,..., n)

A_ = the derivative of A with respect to a parameter

A. = the derivative of _. with respect to

JB J

A_= the nXn diagonal matrix containing %j (j = I, ..., n)

x. = the derivative of x. with respect to
J6 J

%. = the second derivative of _. with respect to
JBB J

I = the nXn identity matrix
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We have then

and

Ax.= k.x (A. I)
J Jj'

yT A = Tkjyj. (A.2)

Also, we assume that the eigenvectors are normalized so that

T T
X .X .=
a a :axe=

V_ _ i.

From (A.I) - (A.3), it follows that

yT= X-1.

(A.3)

(A.4)

The First Derivatives of the Eigenvalues

In the standard way, we differentiate (A.I) with respect to B to

obtain

= % x
ABxj + [A'Ikj]xjB JS j '

and multiply this equation on the left by yT to obtain

j = l, ..., n.
T

kj; yjABxj,

In matrix form,

AB= diag[yTABx];

(A.S)

(A.6)

(A.7)

i.e., A B is the diagonal matrix whose diagonal terms are equal to the

diagonal terms of [yTABx ] .
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The First Derivatives of the Eigenvectors

From here on, we assume that the eigenvalues are distinct. We

move the first term on the right side of (A.5) to the left side and

then multiply the equation on the left by X "I to obtain

X'I[A'IXj]XX'Ix'=JB "X'I[AB" IkjB]xJ" (A.8)

Since

X'IAx = A, (A.9)

(A.8) becomes

[A-Ikj]X'ix. = _X "I
[AB'IXj ]x.. (A i0)JB a "

Next, we define the n-vector

qJB = [ qlJB q2JB''" qnJB ]T (A.11)

so that

xjB XqjB

From (A.4), (A.6) and (A.10), we see

T

q YiABxj i _ j
j J

ijB [xi- xj]

(A.12)

(A.13)

and, in view of (A.3), we must choose qJJB

T T
• 0" " 0o

xj xj B xj Xqj B

so that

(A.14)
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The Second Derivatives of the Eigenvalues

Here, we assume that A is linear in B. Hence,

ABB= 0. (A. 15)

Differentiating (A.5) with respect to B and multiplying the resulting

T
equation by y. on the left yields

J

T° . r

- = 2y.[A.-Ik.]Xq..
XJBB- 2yj[AB'IxjB]xJB J P JB JB

(A.16)

(Recall (A.2), (A.3) and (A.12).) In view of (A.4), (A.6) and (A.13),

(A.16) yields

n T T

%. = 2 Z [ yjABxi][YiA_xj] , j = i, ..., n. (A.17)

J_ i=l

i_j
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Appendix B

COMPARISION OF ANALYTIC

AND FINITE DIFFERENCE GRADIENTS

Here we compare the analytic and the first forward finite

difference gradients of the initial design of Section 6.3. For the

gradient of the objective function (6.9), Tables B-I list the partial

derivatives with respect to the elements of the iXlO control gain

matrix F and 10X2 estimator gain matrix G. For the gradients of the

constraint equations (6.9) - (6.12), Tables B-2 and B-4 list the

partial derivatives with respect to the elements of the control gain

matrix F only since the controller eigenvalues are independent of the

estimator gain matrix G. Tables B-3 and B-5 list the partial

derivatives with respect to the elements of the estimator gain matrix

G only since the estimator eigenvalues are independent of the control

gain matrix F. In these tables, design variables I-I0 correspond to

the elements of the control gain matrix F (F(I,I)=D.V. number i,

F(I,10)=D.V. number I0), design variables 11-20 correspond to the

first column of the estimator gain matrix G which are related to the

rigid-body angle 8(t) measurement (G(I,I)=D.V. number ii, G(10,1)=D.V.

number 20), and design variables 21-30 correspond to the second column

of the estimator gain matrix G which are related to the displacement

of the point mass ml,

G(10,2)=D.V. number 30).

w(t,£) measurement (G(I,2)=D.V. number 21,

Also, FDCH indicates the relative finite

difference step when calculating gradients, and 0.0 indicates less

than I0 "6 see [V2]
, •
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When we use the unscaled design variables in the optimization

problem of Sec. 6.3 (with Method of Feasible Directions), analytic and

finite difference gradients yield similar optimized designs. However,

when we use the scaled design variables in the optimization problem of

Sec. 6.3 (with Method of Feasible Directions), analytic gradients

cause the violation of the constraint equations (6.10) and (6.12) due

to the truncation errors shown in Tables B-3 and B-5.
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DES IGN

VARIABLE

NUMBER

FDCH

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

18

19

2O

21

22

23

24

25

26

27

28

29

30

Table B-1. Analytic

Funct ion (6.8).

FINITE DIFFERENCE

GRADIENT

= 0.01

O. 02284

-0.06532

0.06289

O. 01945

O. 00487

0.01201

-0. 21456

0.04299

O. 03427

O. 11104

0.01186

-0.00332

0.00758

O. 00758

0.0

O. 00253

_0. /%/%#% l -_UUU_I

0.0

0.0

0.0

-0. 44261

0.53198

-0. 11977

-0.99714

0.27351

-0.65388

0.06828

-0. 16013

-0.05191

-0.01320

and Finite

FDCH = 0.001

0.02297

-0.06541

0.06275

0.01936

0. 00480

O. 01244

-0.21475

0.04026

0.03388

0. 11055

0.01167

-0.00474

0.0

0.0

0.0

0.00227

-0. 00474

0.0

0.0

0.0

-0.44318

0.52815

-0. 11743

-I .00000

0.26777

-0.65501

O. 06684

-0. 16642

-0. 05247

-0.01300

Difference

ANALYTIC

GRADIENT

0.02300

-0.06540

0.06281

0.01942

0.00487

0.01250

-0.21465

0.04057

0.03407

0.11079

0.00737

-0.00285

0.01028

0.01239

0.00106

0.00678

-0.00037

0.00112

0.00037

0.00010

-0.44267

0 52885

-0 11649

-0 99642

0 27352

-0 65491

0 06679

-0 16711

-0.05256

-0.01298

Gradients of the Objective
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DESIGN

VARIABLE

NUMBER

1

2

3

4

5

6

7

8

9

I0

FINITE DIFFERENCE

GRADIENT

FDCH = 0.01

-0.00203

0.01045

0.04233

-0.00331

-0.00054

0.00344

-0.01676

0.99857

0.00883

0.00143

Table B-2. Analytic and

Constraint Equation (6.9).

FDCH = 0.001

-0.00196

0.01037

0. 04244

-0.00312

0.0

0. 00348

-0.01734

1.00000

0.00906

0.0

ANALYT IC

GRADIENT

-0.00202

0.01048

0.04229

-0.00328

-0.00055

0.00341

-0.01693

0.99864

0.00881

0.00139

Finite Difference Gradients

DESIGN

VARIABLE

NUMBER

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

FINITE DIFFERENCE

GRADIENT

FDCH = 0.01 FDCH = 0.001

-1.00000 -0.99961 -0

0.0 0.0 -0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ANALYT IC

GRADIENT

.99997

.00219

0.03735

0.00279

0.00047

0.00000

0.00177

-0.03048

-0.00273

-O.OOll2

-0.00301

-O.O0001

O.O0011

O.O0001

0.00000

0.00000

0.00001

-0.00009

-0.00001

-0.00000

Table B-3. Analytic and Finite Difference Gradients

Constraint Equation (6.10).
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DESIGN

VARIABLE

NUMBER

1

2

3

4

5

6

8

9

I0

FINITE DIFFERENCE

GRADIENT

FDCH = 0.01

-0.99434

-0.02778

-0.01418

-0.00271

-0.00046

0.46823

0.35882

0.05527

0.00983

0.00242

FDCH = 0.001

-0.99881

-0. 02925

-0.01289

0.0

0.0

0.45985

0.35938

O. 05640

0.0

0.0

ANALYTIC

GRADIENT

-I.00000

-0.02918

-0.01429

-0.00270

-0.00054

0.45924

0.35966

0.05556

0.01003

0.00200

Table 8-4. Analytic and Finite Difference Gradients

Constraint Equation (6.11).

DESIGN

VARIABLE

NUMBER

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

FINITE DIFFERENCE ANALYTIC

GRADIENT GRADIENT

FDCH = 0;01 FDCH = 0.001

0.97789 0.96165

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

-0.99094 -0.99917

0.0 0.0

0.0 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

Table B-5. Analytic and Finite Difference

Constraint Equation (6.12).

0 95976

-0 00014

0 00174

0 00034

0 00035

-I 00000

-0.00050

0.00967

0.00084

0.00034

0.00288

-0.00000

0.00001

0.00000

0.00000

-0.00301

-0.00000

0.00003

0.00000

0.00000

Gradients
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